Lehrstuhl für Theoretische Informationstechnik

Homework 8 in Cryptography II Prof. Dr. Rudolf Mathar, Wolfgang Meyer zu Bergsten, Michael Reyer 02.07.2009

Exercise 23. Sign the message m = 231 using the ElGamal signature scheme. The parameters for the crypto system are

 $p = 4793, x_A = 9177$ and a = 4792.

Before signing, check if these parameters fulfill the requirements of the signature scheme. Alternative values (in case the requirements are not fulfilled) are

 $p = 8501, x_A = 257$ and a = 1400.

The random secret shall be chosen as k = 2811.

RNNTHAACHE

Exercise 24. Verify the ElGamal signature $\langle r, s \rangle = \langle 373, 15 \rangle$ for the message m = 65. The message was signed using the public parameters $y_A = 399$, p = 859 and a = 206.

Exercise 25. The complete subtree method within a broadcast encryption scenario with $N \in \mathbb{N}$, $N = 2^l$, $l \in \mathbb{N}$, users is modelled by a binary tree, where the leaves represent the users. Each node of the tree has an encryption key known by all of the descendant users. There shall be $r \in \mathbb{N}$, $r \leq N$ users revoked, i.e. none of the keys of their ancestor nodes must be used.

- (a) Show that a maximum of $r \log_2\left(\frac{N}{r}\right)$ encrypted keys with their respective identifiers must be sent.
- (b) For which r is the maximum number of pairs necessary? How do the revoked users need to be positioned at the leaves of the tree such that the maximum is attained?
- (c) How many messages must be sent at minimum if $r = 2^k$, $0 \le k \le l$ users are revoked?