Homework 9 in Cryptography II

Prof. Dr. Rudolf Mathar, Wolfgang Meyer zu Bergsten, Michael Reyer 09.07.2009

Exercise 26. In the verification algorithm of the ElGamal-Signature one first checks, whether $1 \leq r<p$. Show that an attacker can generate a signature for an arbitrary message m^{\prime} by intercepting one valid signature (r, s) for a message m if this step is omitted.

Hint: Assume that $h(m)$ and $h\left(m^{\prime}\right)$ are invertible modulo $p-1$.

Exercise 27. Sign the message with the hash value $h(m)=18723$ with a DSA signature using artificially small numbers. For the public key use $p=27583, q=4597, a=504, y=23374$. The private key is $x=1860$.
Afterwards, verify the signature.

Exercise 28. Suggest a probabilistic algorithm to determine a pair of primes p, q with

$$
\begin{aligned}
2^{159} & <q<2^{160} \\
2^{1023} & <p<2^{1024}, \\
q & \mid p-1 .
\end{aligned}
$$

What is the success probability of your algorithm?
Hint: Assume the unproven statement that the number of primes of the form $k q+1, k \in \mathbb{N}$, is asymptotically the number given by the „prime number theorem" divided by q.

