Homework 5 in Cryptography II

Prof. Dr. Rudolf Mathar, Wolfgang Meyer zu Bergsten, Steven Corroy 08.06.2010

Exercise 13.

Bob receives the following cryptogram from Alice:
(101010111000011010001011100101111100110111000, 1306)
The corresponding message has been encrypted using the Blum-Goldwasser cryptosystem with public key $n=1333$. The number 1306 corresponds to the value x_{10} (cf. lecture notes). Decipher the cryptogram.
Note: The security requirement to only use a maximum of $\log _{2}\left(\log _{2}(n)\right)$ bits of the BBS generator is violated in this example. Instead, 5 bits of output are used.
Hint: The letters of the latin alphabet A, \ldots, Z are represented using the following 5 bit representation: $A=00000, B=00001, \ldots, Z=11001$.

Exercise 14.

Consider the following function:

$$
\left.h:\{0,1\}^{*} \rightarrow\{0,1\}^{*}, k \mapsto\left(\left\lfloor 10000\left((k)_{10}(1+\sqrt{5}) / 2-\left\lfloor(k)_{10}(1+\sqrt{5}) / 2\right)\right\rfloor\right)\right\rfloor\right)_{2} .
$$

Here, $\lfloor x\rfloor$ is the floor function of x (round down to the next integer smaller than x). For computing $h(k)$, the bitstring k is identified with the positive integer it represents. The result is then converted to binary representation.
(example: $\left.k=10011,(k)_{10}=19, h(k)=(7426)_{2}=1110100000010\right)$
a) Determine the maximal length of the output of h.
b) Give a collision for h.

Exercise 15.

Consider the following functions. Check if they fulfil the necessary properties of hash functions.
(a) Let p a 1024 bit prime, a a primitive root modulo p. Define $h: \mathbb{Z} \rightarrow \mathbb{Z}_{p}^{*}, x \mapsto a^{x}$ $\bmod p$.
(b) Let $g:\{0,1\}^{*} \rightarrow\{0,1\}^{n}$ a cryptographic hash function, $n \in \mathbb{N}$. Define
$h:\{0,1\}^{*} \rightarrow\{0,1\}^{n+1}$ as follows: If $x \in\{0,1\}^{n}$, then $h(x)=(1, x)$. In other cases, $h(x)=(0, g(x))$.

