

Homework 5 in Cryptography II Prof. Dr. Rudolf Mathar, Wolfgang Meyer zu Bergsten, Steven Corroy 08.06.2010

Exercise 13.

RWTHAACHEN

Bob receives the following cryptogram from Alice:

The corresponding message has been encrypted using the Blum-Goldwasser cryptosystem with public key n = 1333. The number 1306 corresponds to the value x_{10} (cf. lecture notes). Decipher the cryptogram.

Note: The security requirement to only use a maximum of $\log_2(\log_2(n))$ bits of the BBS generator is violated in this example. Instead, 5 bits of output are used.

Hint: The letters of the latin alphabet A, \ldots, Z are represented using the following 5 bit representation: $A = 00000, B = 00001, \ldots, Z = 11001.$

Exercise 14.

Consider the following function:

 $h: \{0,1\}^* \to \{0,1\}^*, \ k \mapsto (\lfloor 10000((k)_{10}(1+\sqrt{5})/2 - \lfloor (k)_{10}(1+\sqrt{5})/2) \rfloor) \rfloor)_2.$

Here, $\lfloor x \rfloor$ is the floor function of x (round down to the next integer smaller than x). For computing h(k), the bitstring k is identified with the positive integer it represents. The result is then converted to binary representation.

(example: k = 10011, $(k)_{10} = 19$, $h(k) = (7426)_2 = 1110100000010$)

- a) Determine the maximal length of the output of h.
- b) Give a collision for h.

Exercise 15.

Consider the following functions. Check if they fulfil the necessary properties of hash functions.

- (a) Let p a 1024 bit prime, a a primitive root modulo p. Define $h: \mathbb{Z} \to \mathbb{Z}_p^*, x \mapsto a^x \mod p$.
- (b) Let $g: \{0,1\}^* \to \{0,1\}^n$ a cryptographic hash function, $n \in \mathbb{N}$. Define $h: \{0,1\}^* \to \{0,1\}^{n+1}$ as follows: If $x \in \{0,1\}^n$, then h(x) = (1,x). In other cases, h(x) = (0,g(x)).