Homework 8 in Cryptography II

Prof. Dr. Rudolf Mathar, Wolfgang Meyer zu Bergsten, Steven Corroy 29.06.2010

Exercise 22.

We consider the parameter generation algorithm of DSA.
Given $2^{159}<q<2^{160}$ and $0 \leq t \leq 8$ such that $2^{511+64 t}<p<2^{512+64 t}$ and $q \mid p-1$.
Given the followin algorithm:

1) Select $g \in \mathbb{Z}_{p}^{*}$.
2) Compute $a=g^{\frac{p-1}{q}}$.
3) If $a=1$ go to 1).
4) Else return a.

Prove that a is a generator of the cyclic subgroup of order q in \mathbb{Z}_{p}^{*}.

Exercise 23.

Sign the message with the hash value $h(m)=18723$ with a DSA signature using artificially small numbers. For the public key use $p=27583, q=4597, a=504, y=23374$. The private key is $x=1860$.
Afterwards, verify the signature.

Exercise 24.

Suggest a probabilistic algorithm to determine a pair of primes p, q with

$$
\begin{aligned}
2^{159} & <q<2^{160} \\
2^{1023} & <p<2^{1024}, \\
q & \mid p-1 .
\end{aligned}
$$

What is the success probability of your algorithm?
Hint: Assume the unproven statement that the number of primes of the form $k q+1, k \in \mathbb{N}$, is asymptotically the number given by the „prime number theorem" divided by q.

