Homework 1 in Advanced Methods of Cryptography Prof. Dr. Rudolf Mathar, Michael Reyer, Henning Maier 18.10.2011

Exercise 1.

RNNTHAACHEI

- (a) Compute $11^{213} \pmod{42}$.
- (b) Compute $16^{512} \pmod{17}$ without using the square-and-multiply-algorithm.

Exercise 2.

Consider the following algorithm to compute the discrete logarithm:

Algorithm 1 Babystep-Giantstep-Algorithm

Input: p prime, α as a primitive element mod p, $\beta \equiv \alpha^x \mod p$ with $\beta \in \mathbb{Z}_p^*$ for an unknown $x \in \{0, \dots, p-1\}$

Output: $x = \log_{\alpha} \beta$,

(1) $m \leftarrow \lceil \sqrt{p} \rceil$

- (2) Compute a table of *babysteps* $b_j = \alpha^j \mod p$ for all indices $j \in \mathbb{Z}$ in $0 \le j < m$.
- (3) Compute a table of giantsteps $g_i = \beta \alpha^{-im} \mod p$ for indices $i \in \mathbb{Z}$ in $0 \le i < m$,
- (4) until you find a pair (i, j) such that $b_j = g_i$ holds.
- return $x = mi + j \mod (p 1)$.
- (a) Prove that the given algorithm calculates the discrete logarithm.
- (b) Why is α a primitive element mod p?
- (c) Compute the discrete log of $\alpha^x \mod p = \beta$ with $\alpha = 3$, p = 29 and $\beta = 13$.

Remark: The *ceiling-function* is defined as $\lceil x \rceil = \min\{k \in \mathbb{Z} | k \ge x\}$.

Exercise 3.

Let $x, y \in \mathbb{Z}, a \in \mathbb{Z}_n^* \setminus \{1\}$, and $\operatorname{ord}_n(a) = \min\{k \in \{1, \dots, \varphi(n)\} | a^k \equiv 1 \mod n\}$.

(a) Show that $a^x \equiv a^y \pmod{n} \iff x \equiv y \pmod{\operatorname{ord}_n(a)}$.

Exercise 4. Solve $a^{13} \equiv 17 \mod 31$. Note that 31 is prime.