Homework 1 in Advanced Methods of Cryptography
 Prof. Dr. Rudolf Mathar, Michael Reyer, Henning Maier
 18.10.2011

Exercise 1.

(a) Compute $11^{213}(\bmod 42)$.
(b) Compute $16^{512}(\bmod 17)$ without using the square-and-multiply-algorithm.

Exercise 2.

Consider the following algorithm to compute the discrete logarithm:

```
Algorithm 1 Babystep-Giantstep-Algorithm
Input: \(p\) prime, \(\alpha\) as a primitive element \(\bmod p, \beta \equiv \alpha^{x} \bmod p\) with \(\beta \in \mathbb{Z}_{p}^{*}\) for an
    unknown \(x \in\{0, \ldots, p-1\}\)
Output: \(x=\log _{\alpha} \beta\),
    (1) \(m \leftarrow\lceil\sqrt{p}\rceil\)
    (2) Compute a table of babysteps \(b_{j}=\alpha^{j} \bmod p\) for all indices \(j \in \mathbb{Z}\) in \(0 \leq j<m\).
    (3) Compute a table of giantsteps \(g_{i}=\beta \alpha^{-i m} \bmod p\) for indices \(i \in \mathbb{Z}\) in \(0 \leq i<m\),
    (4) until you find a pair \((i, j)\) such that \(b_{j}=g_{i}\) holds.
    return \(x=m i+j \bmod (p-1)\).
```

(a) Prove that the given algorithm calculates the discrete logarithm.
(b) Why is α a primitive element $\bmod p$?
(c) Compute the discrete \log of $\alpha^{x} \bmod p=\beta$ with $\alpha=3, p=29$ and $\beta=13$.

Remark: The ceiling-function is defined as $\lceil x\rceil=\min \{k \in \mathbb{Z} \mid k \geq x\}$.

Exercise 3.

Let $x, y \in \mathbb{Z}, a \in \mathbb{Z}_{n}^{*} \backslash\{1\}$, and $\operatorname{ord}_{n}(a)=\min \left\{k \in\{1, \ldots, \varphi(n)\} \mid a^{k} \equiv 1 \bmod n\right\}$.
(a) Show that $a^{x} \equiv a^{y}(\bmod n) \Longleftrightarrow x \equiv y\left(\bmod \left(\operatorname{ord}_{\mathrm{n}}(\mathrm{a})\right)\right)$.

Exercise 4. Solve $a^{13} \equiv 17 \bmod 31$. Note that 31 is prime.

