Homework 12 in Advanced Methods of Cryptography

Prof. Dr. Rudolf Mathar, Michael Reyer, Henning Maier
24.01.2012

Exercise 34. Consider the equation

$$
Y^{2}=X^{3}+X+1
$$

(a) Show that this equation describes an elliptic curve E over the field \mathbb{F}_{7}.
(b) Determine all points in $E\left(\mathbb{F}_{7}\right)$ and compute the trace t of E.
(c) Show that $E\left(\mathbb{F}_{7}\right)$ is cyclic and give a generator.

Exercise 35.

Let $E: Y^{2}=X^{3}+a X+b$ be a curve over the field K with $\operatorname{char}(K) \neq 2,3$ and let $f:=Y^{2}-X^{3}-a X-b$.
A point $P=(x, y) \in E$ is called singular, if both formal partial derivatives $\partial f / \partial X(x, y)$ and $\partial f / \partial Y(x, y)$ vanish at P.
(a) Prove that for the discriminant Δ of E it holds that
$\Delta \neq 0 \Leftrightarrow E$ has no singular points.

