Homework 13 in Advanced Methods of Cryptography

Prof. Dr. Rudolf Mathar, Michael Reyer, Henning Maier
31.01.2012

Exercise 36.

Consider a polynomial in $x \in \mathbb{R}$ of degree n and its first derivative:

$$
f(x)=f_{n} x^{n}+\cdots+f_{0}, \quad f^{\prime}(x)=n f_{n} x^{n-1}+\cdots+f_{1} .
$$

The discriminant Δ is an invariant to evaluate the number and multiplicity of roots in a polynomial $f(x)$. It is computed as following:

$$
\Delta=(-1)^{\binom{n}{2}} \operatorname{Res}\left(f, f^{\prime}\right) \frac{1}{f_{n}}
$$

The resultant $\operatorname{Res}(f, g)$ is used to compute shared roots in the polynomial $f(x)$ of degree n and polynomial $g(x)$ of degree m. The resultant is defined as the determinant of the $(m+n) \times(m+n)$ Sylvestermatrix:

$$
\left.\operatorname{Res}(f, g)=\operatorname{det}\left(\begin{array}{cccccccc}
f_{n} & & \cdots & & f_{0} & 0 & & 0 \\
0 & f_{n} & & \ldots & & f_{0} & & \\
& & \ddots & & & & \ddots & 0 \\
0 & & 0 & f_{n} & & \ldots & & f_{0} \\
g_{m} & & \cdots & & g_{0} & 0 & & 0 \\
0 & g_{m} & & \ldots & & g_{0} & & \\
& & \ddots & & & & \ddots & 0 \\
0 & & 0 & g_{m} & & \cdots & & g_{0}
\end{array}\right)\right\} m
$$

(a) Compute the discriminant Δ of the quadratic polynomial $f(x)=a x^{2}+b x+c$.
(b) Compute the discriminant Δ of the cubic polynomial $f(x)=x^{3}+a x+b$.

Exercise 37.

Describe how the DSA signature scheme can be carried out in a group of \mathbb{F}_{p}-rational points on an elliptic curve E / \mathbb{F}_{p}.

