Homework 3 in Advanced Methods of Cryptography
 Prof. Dr. Rudolf Mathar, Michael Reyer, Henning Maier
 08.11.2011

Exercise 8.

Prove Euler's criterion (cf. Proposition 9.2 given in the lecture notes):
Let $p>2$ be prime. $c \in \mathbb{Z}_{p}^{*}$ is a quadratic residue $\bmod p$ if and only if $c^{\frac{p-1}{2}} \equiv 1(\bmod p)$.

Exercise 9.

Alice and Bob are using the Rabin cryptosystem. Bob's public key is $n=4757$. All integers in the set $\{1, \ldots, n-1\}$ are represented by sequences of 13 bits. In order to identify the correct message, Alice and Bob agreed to only send messages with the last 2 bits set to 1 . Suppose Alice sends the cryptogram $c=1935$:
(a) Find the private key by factoring the public key $n=p q$.
(b) Decipher the cryptogram c and identify the correct message m.

Exercise 10.

Consider the coin flipping protocol. Let $p>2$ be prime.
(a) Show that if $x \equiv-x(\bmod p)$, then $x \equiv 0(\bmod p)$.
(b) Suppose $x, y \not \equiv 0(\bmod p)$ and $x^{2} \equiv y^{2}\left(\bmod p^{2}\right)$. Show that $x \equiv \pm y\left(\bmod p^{2}\right)$.
(c) Suppose Alice cheats when flipping coins over the telephone by choosing $p=q$. Show that Bob always loses if he trusts Alice.
(d) Bob suspects that Alice has cheated. Why is it not wise for Alice to choose $n=p^{2}$ as secret key, can Bob discover her attempt to cheat? Can Bob use her cheat as an advantage for himself?

