Homework 4 in Advanced Methods of Cryptography
 Prof. Dr. Rudolf Mathar, Michael Reyer, Henning Maier
 15.11.2011

Exercise 11. Let $p>2$ be prime. Let $\left(\frac{a}{p}\right)$ be the Legendre symbol. Prove the following calculation rules.
(a) $\left(\frac{-1}{p}\right)=(-1)^{\frac{p-1}{2}}$
(b) $\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)=\left(\frac{a b}{p}\right)$
(c) $\left(\frac{a}{p}\right)=\left(\frac{b}{p}\right)$, if $a \equiv b \bmod p$

Exercise 12. Let p be prime, g a primitive element modulo p and $a, b \in \mathbb{Z}_{p}^{*}$. Show the following:
(a) a is a quadratic residue modulo p if and only if there exists an even $i \in \mathbb{N}_{0}$ with $a \equiv g^{i}(\bmod p)$.
(b) If p is odd, then exactly one half of the elements $x \in \mathbb{Z}_{p}^{*}$ are quadratic residues modulo p.
(c) The product $a b$ is a quadratic residue modulo p if and only if a and b are both either quadratic residues or quadratic non-residues modulo p.

Exercise 13. Establish a message decryption with the Goldwasser-Micali cryptosystem.
Start by finding the cryptosystem's parameters.
(a) Find a pseudo-square modulo $n=p \cdot q=31 \cdot 79$ by using the algorithm from the lecture notes. Start with $a=10$ and increase a by 1 until you find a quadratic non-residue modulo p. For b, start with $b=17$ and proceed analoguously.
(b) Decrypt the ciphertext $c=(1418,2150,2153)$.

