Homework 5 in Advanced Methods of Cryptography
 Prof. Dr. Rudolf Mathar, Michael Reyer, Henning Maier
 22.11.2011

Exercise 14.

Bob receives the following cryptogram from Alice:

$$
\left(c=101010111000011010001011100101111100110111000, x_{t+1}=1306\right)
$$

The message m has been encrypted using the Blum-Goldwasser cryptosystem with a public key $n=1333$. The letters of the Latin alphabet A, \ldots, Z are represented by the following 5 bit representation: $A=00000, B=00001, \ldots, Z=11001$.
(a) Factorize n and decipher the cryptogram c.

Remark: The security requirement to use at most $h=\left\lfloor\log _{2}\left\lfloor\log _{2} n\right\rfloor\right\rfloor$ bits of the Blum-Blum-Shub generator is violated in this example. Instead, 5 bits of the output are used.

Exercise 15.

We assume that the attacker has secret access to the decoding-hardware of the BlumGoldwasser cryptosystem computing the message m when fed with a cryptogram c. The decoded output is not the value x_{0} but only the message m.
Furthermore assume that it is possible to compute ${ }^{1}$ a quadratic residue modulo n when knowing the last $h=\left\lfloor\log _{2}\left\lfloor\log _{2} n\right\rfloor\right\rfloor$ bits of the given quadratic residue.
(a) Show that the given cryptosystem is not secure against chosen-ciphertext attacks.

Exercise 16.

The security of the Blum-Blum-Shub generator is based on the intricacy to compute square roots modulo $n=p q$ for two distinct primes p and q with $p, q \equiv 3(\bmod 4)$.
(a) Design a generator for pseudorandom bits which is based on the hardness of the RSA-problem.

[^0]
[^0]: ${ }^{1}$ Assume that a function $f:\{0,1\}^{h} \rightarrow \mathbb{Z}_{n}$ with $f\left(b_{i}\right)=x_{i}, 1 \leq i \leq t$, exists.

