Homework 9 in Advanced Methods of Cryptography Prof. Dr. Rudolf Mathar, Michael Reyer, Henning Maier

20.12.2011

Exercise 26.

RNTHAACHE

There exist many variations of the ElGamal signature scheme which do no compute the signing equation as $s = k^{-1}(h(m) - xr) \mod (p-1)$.

- (a) Consider the signing equation $s = x^{-1}(h(m) kr) \mod (p-1)$. Show that $a^{h(m)} \equiv y^s r^r \pmod{p}$ is a valid verification procedure.
- (b) Consider the signing equation $s = xh(m) + kr \mod (p-1)$. Propose a valid verification procedure.
- (c) Consider the signing equation $s = xr + kh(m) \mod (p-1)$. Propose a valid verification procedure.

Exercise 27.

Consider the Digital Signature Algorithm (DSA) using artificially small numbers. For the public key use p = 27583, q = 4597, a = 504, y = 23374. For the private key use x = 1860 and the random secret number k = 1773.

(a) Sign the message with the hash value h(m) = 18723 and verify the signature.

Exercise 28.

Consider the parameter generation algorithm of DSA. It provides a prime $2^{159} < q < 2^{160}$ and an integer $0 \le t \le 8$ such that for prime p, $2^{511+64t} and <math>q \mid p-1$ holds. The following scheme is given:

- (1) Select a random $g \in \mathbb{Z}_p^*$
- (2) Compute $a = g^{\frac{p-1}{q}} \mod p$
- (3) If a = 1, go to label (1) else return a
- (a) Prove that a is a generator of the cyclic subgroup of order q in \mathbb{Z}_{p}^{*} .