Homework 9 in Advanced Methods of Cryptography
 Prof. Dr. Rudolf Mathar, Michael Reyer, Henning Maier
 20.12.2011

Exercise 26.

There exist many variations of the ElGamal signature scheme which do no compute the signing equation as $s=k^{-1}(h(m)-x r) \bmod (p-1)$.
(a) Consider the signing equation $s=x^{-1}(h(m)-k r) \bmod (p-1)$. Show that $a^{h(m)} \equiv y^{s} r^{r}(\bmod p)$ is a valid verification procedure.
(b) Consider the signing equation $s=x h(m)+k r \bmod (p-1)$. Propose a valid verification procedure.
(c) Consider the signing equation $s=x r+k h(m) \bmod (p-1)$. Propose a valid verification procedure.

Exercise 27.

Consider the Digital Signature Algorithm (DSA) using artificially small numbers. For the public key use $p=27583, q=4597, a=504, y=23374$. For the private key use $x=1860$ and the random secret number $k=1773$.
(a) Sign the message with the hash value $h(m)=18723$ and verify the signature.

Exercise 28.

Consider the parameter generation algorithm of DSA. It provides a prime $2^{159}<q<2^{160}$ and an integer $0 \leq t \leq 8$ such that for prime $p, 2^{511+64 t}<p<2^{512+64 t}$ and $q \mid p-1$ holds. The following scheme is given:
(1) Select a random $g \in \mathbb{Z}_{p}^{*}$
(2) Compute $a=g^{\frac{p-1}{q}} \bmod p$
(3) If $a=1$, go to label (1) else return a
(a) Prove that a is a generator of the cyclic subgroup of order q in \mathbb{Z}_{p}^{*}.

