Review Exercise Cryptography
 - Proposal for Solution -

Prof. Dr. Rudolf Mathar, Michael Reyer, Henning Maier 06.03.2012

Solution to Exercise 5.

Claim: For $a, b \in \mathbb{N}$, it holds that $\varphi(a b)=\varphi(a) \varphi(b)$ if $\operatorname{gcd}(a, b)=1$.
Remark: $\operatorname{gcd}(a, b)=1 \Rightarrow \operatorname{gcd}(a b, m)=\operatorname{gcd}(a, m) \cdot \operatorname{gcd}(b, m)$.
It further holds that:

$$
\begin{array}{ll}
& \operatorname{gcd}(a, m) \cdot \operatorname{gcd}(b, m)=1 \\
\Leftrightarrow \quad & \operatorname{gcd}(a, m)=1 \wedge \operatorname{gcd}(b, m)=1 .
\end{array}
$$

The (multiplicative) totient (Euler-phi) function is:

$$
\varphi(n)=\left|\mathbb{Z}_{n}^{*}\right|=\left|\left\{x \in \mathbb{Z}_{n} \mid \operatorname{gcd}(x, n)=1\right\}\right| .
$$

Consider the following sets:

$$
\begin{array}{rll}
\mathbb{Z}_{a}^{*}=\left\{x \in \mathbb{Z}_{a} \mid \operatorname{gcd}(x, a)=1\right\}, & \varphi(a)=\left|\mathbb{Z}_{a}^{*}\right|, \\
\mathbb{Z}_{b}^{*}=\left\{x \in \mathbb{Z}_{b} \mid \operatorname{gcd}(x, b)=1\right\}, & \varphi(b)=\left|\mathbb{Z}_{b}^{*}\right|, \\
\mathbb{Z}_{a b}^{*}=\left\{x \in \mathbb{Z}_{a b} \mid \operatorname{gcd}(x, a b)=1\right\}, & \varphi(a b)=\left|\mathbb{Z}_{a}^{*} \times \mathbb{Z}_{b}^{*}\right| .
\end{array}
$$

For $n=a b$, we may use the remark and compute:

$$
\begin{aligned}
\varphi(a b) & =\left|\mathbb{Z}_{a b}^{*}\right| \\
& =\left|\left\{x \in \mathbb{Z}_{a b} \mid \operatorname{gcd}(x, a b)=1\right\}\right| \\
& =\left|\left\{x \in \mathbb{Z}_{a b} \mid \operatorname{gcd}(x, a) \cdot \operatorname{gcd}(x, b)=1\right\}\right| \\
& =\left|\left\{x \in \mathbb{Z}_{a b} \mid \operatorname{gcd}(x, a)=1 \wedge \operatorname{gcd}(x, b)=1\right\}\right| \\
& \leq\left|\left\{x \in \mathbb{Z}_{a} \mid \operatorname{gcd}(x, a)=1\right\}\right| \cdot\left|\left\{y \in \mathbb{Z}_{b} \mid \operatorname{gcd}(y, b)=1\right\}\right| \\
& =\left|\mathbb{Z}_{a}^{*}\right| \cdot\left|\mathbb{Z}_{b}^{*}\right| .
\end{aligned}
$$

Since $\operatorname{gcd}(a, b)=1$, we can use the Chinese Remainder Theorem:

$$
\begin{gathered}
f: \mathbb{Z}_{a b} \rightarrow \mathbb{Z}_{a} \times \mathbb{Z}_{b}, \\
f(x)=(x \bmod a, x \bmod b) .
\end{gathered}
$$

It follows that $f(x)=f(y) \Leftrightarrow x=y$ and $x \neq y \Leftrightarrow f(x) \neq f(y)$ hold and thus:

$$
\left|\mathbb{Z}_{a b}^{*}\right| \geq\left|\mathbb{Z}_{b}^{*}\right| \cdot\left|\mathbb{Z}_{b}^{*}\right| .
$$

Thus we can conclude that equality holds:

$$
\varphi(a b)=\left|\mathbb{Z}_{a b}^{*}\right|=\left|\mathbb{Z}_{a}^{*}\right| \cdot\left|\mathbb{Z}_{b}^{*}\right|=\varphi(a) \varphi(b) .
$$

