

Prof. Dr. Anke Schmeink, Michael Reyer, Christopher Schnelling

Übung 11 Montag, 04. Juli 2016

Aufgabe 1. Gegeben sei das folgende Jackson-Netz.

Die Server S_1 und S_2 sind jeweils durch $M/M/\infty$ -Bediensysteme mit positiven Bedienraten μ_1 und μ_2 zu beschreiben, wohingegen die Server S_3 und S_4 durch M/M/1-Bediensysteme mit positiven Bedienraten μ_3 und μ_4 darzustellen sind. Einige Routingwahrscheinlichkeiten sind parametrisiert angegeben, insbesondere $r_{12} = \alpha$, $r_{40} = \beta$ und $r_{24} = \gamma$.

- a) Geben Sie alle Bedingungen für die Routingparameter an, so dass ein offenes Jackson-Netz vorliegt.
- b) Geben Sie den Zustandsraum und die Routingmatrix des offenen Jackson-Netzes an.
- c) Wie muss man die Bedienintensität μ_1 wählen, damit im stationären Zustand die mittlere Anzahl an Anforderungen an Server S_1 und S_2 gleich ist?
- d) Wie muss man für $\alpha=0$ die Bedienintensität μ_3 wählen, damit im stationären Zustand die mittlere Gesamtverweilzeit an Server S_3 und S_4 gleich ist? Sie dürfen ohne Beweis benutzen, dass der Fluss $\Lambda_3^*=\frac{2\lambda}{\beta}$ beträgt.

Es seien nun $\lambda>0,\ \alpha=\frac{2}{5},\beta=\frac{2}{3}$ und $\gamma=\frac{1}{2},$ es liegt also ein offenes Jackson-Netz vor.

e) Sie können $\Lambda_4^* = \lambda$ benutzen. Wann existiert eine stationäre Verteilung und wie lautet diese?

Nehmen Sie nun an, dass $\lambda = \alpha = \beta = 0$ und $\gamma = 1$ ist. Es liegt also ein geschlossenes Jackson-Netz vor. Ferner seien $\mu_1 = \mu_2 = \mu_4 = 2$ und $\mu_3 = 1$. Es befinden sich M = 3 Anforderungen im System. Zudem befinde sich zu Beginn keine Anforderung in S_2 .

- f) Bestimmen Sie den Zustandsraum des geschlossenen Jackson-Netzes und seine Mächtigkeit.
- g) Wie lautet für M=3 die stationäre Verteilung? Benutzen Sie bei der Berechnung $\Lambda_1^*=2$.