Homework 1 in Optimization in Engineering

Prof. Dr. Rudolf Mathar, Simon Görtzen, Markus Rothe 19.04.2012

Exercise 1. (linear regression) In a series of measurements, the following three $x-y$-pairs have been obtained: $(-1,1.5),(0,2.0)$, and $(1,3.0)$.
Apart from measurement errors, y is assumed to be an affine function of x. The goal is to find a line $g(x)=m \cdot x+n$ which minimizes the sum of squared differences between $g(x)$ and y at all measurement points.

Formulate the above problem of linear regression as an optimization problem with optimization variable $\boldsymbol{v}=\binom{m}{n} \in \mathbb{R}^{2}$. Note the problem class and convert the problem to standard form if necessary. Compute the optimal solution \boldsymbol{v}^{*}.

Exercise 2. (convex functions) Show that the following functions are convex by verifying the definition, i.e., that

$$
f(\alpha \boldsymbol{x}+(1-\alpha) \boldsymbol{y}) \leq \alpha f(\boldsymbol{x})+(1-\alpha) f(\boldsymbol{y})
$$

is satisfied for all $\boldsymbol{x}, \boldsymbol{y}$ in the domain of f and all $\alpha \in[0,1]$.
a) $f(u)=u, u \in \mathbb{R}$
b) $f(u)=\frac{1}{u}, u \in \mathbb{R}_{>0}$
c) $f(u)=u^{2}, u \in \mathbb{R}$
d) $f(u)=|u|, u \in \mathbb{R}$

