Lehrstuhl für Theoretische Informationstechnik

Homework 2 in Optimization in Engineering

Prof. Dr. Rudolf Mathar, Simon Görtzen, Markus Rothe25.04.2012

Exercise 1. (properties of convex sets) A set C is convex, if

RNNTHAACHE

$$\alpha \boldsymbol{x} + (1 - \alpha) \boldsymbol{y} \in \mathcal{C} \text{ for all } \boldsymbol{x}, \boldsymbol{y} \in \mathcal{C}, \, \alpha \in [0, 1].$$

- **a**) Let C_1 and C_2 be convex sets. Show that $C_1 \cap C_2$ is convex.
- b) Prove the following equivalence: A set $\mathcal{C} \subseteq \mathbb{R}^n$ is convex if and only if the intersection of \mathcal{C} and any line in \mathbb{R}^n is convex.

Exercise 2. (convex hull) The *convex hull* conv(S) of a set S is the set of all convex combinations of (a finite number of) points in S:

$$\operatorname{conv}(\mathcal{S}) = \left\{ \sum_{i=1}^{k} \alpha_i \boldsymbol{x}_i \, \middle| \, \sum_{i=1}^{k} \alpha_i = 1, \, \boldsymbol{x}_i \in \mathcal{S}, \, \alpha_i \ge 0, \, 1 \le i \le k, \, k \in \mathbb{N} \right\}$$

Show that $\operatorname{conv}(\mathcal{S})$ is the intersection of all convex sets which include \mathcal{S} :

$$\operatorname{conv}(\mathcal{S}) = \bigcap_{\substack{\mathcal{C} \text{ convex} \\ \text{with } \mathcal{S} \subset \mathcal{C}}} \mathcal{C}$$

Exercise 3. (convex figures) Show that the following sets are convex.

a) A slab $\{ \boldsymbol{x} \in \mathbb{R}^n \mid \alpha \leq \boldsymbol{a}^T \boldsymbol{x} \leq \beta \}$ with $\boldsymbol{a} \in \mathbb{R}^n_{\neq \boldsymbol{0}}$ und $\alpha, \beta \in \mathbb{R}$.

- **b)** A (hyper)rectangle $\{ \boldsymbol{x} \in \mathbb{R}^n \mid \alpha_i \leq x_i \leq \beta_i, 1 \leq i \leq n \}$ with $\alpha_i, \beta_i \in \mathbb{R}, 1 \leq i \leq n$.
- c) A wedge $\{ \boldsymbol{x} \in \mathbb{R}^n \mid \boldsymbol{a}_1^T \boldsymbol{x} \leq \beta_1, \, \boldsymbol{a}_2^T \boldsymbol{x} \leq \beta_2 \}$ with $\boldsymbol{a}_1, \, \boldsymbol{a}_2 \in \mathbb{R}_{\neq \boldsymbol{0}}^n$ and $\beta_1, \, \beta_2 \in \mathbb{R}$.

Reminder: Halfspaces $\{ \boldsymbol{x} \in \mathbb{R}^n \mid \boldsymbol{a}^T \boldsymbol{x} \leq \beta \}$ with $\boldsymbol{a} \in \mathbb{R}_{\neq 0}^n$ and $\beta \in \mathbb{R}$ are convex.