Lehrstuhl für Theoretische Informationstechnik

Homework 3 in Optimization in Engineering

Prof. Dr. Rudolf Mathar, Simon Görtzen, Markus Rothe02.05.2012

Exercise 1. (Voronoi description) Let \boldsymbol{a} and \boldsymbol{b} be distinct points in \mathbb{R}^n . Show that the set of all points that are closer (in Euclidean norm) to \boldsymbol{a} than \boldsymbol{b} is a halfspace, i.e.,

 $\left\{ oldsymbol{x} \mid ||oldsymbol{x} - oldsymbol{a}||_2 \le ||oldsymbol{x} - oldsymbol{b}||_2
ight\} = \left\{ oldsymbol{x} \mid \mathbf{c}^T oldsymbol{x} \le d
ight\}$

for a $\mathbf{c} \in \mathbb{R}^n_{\neq \mathbf{0}}$ and $d \in \mathbb{R}$. Now let $\boldsymbol{x}_0, \ldots, \boldsymbol{x}_k \in \mathbb{R}^n$. The set

$$\mathcal{V} = \left\{ m{x} \mid ||m{x} - m{x}_0||_2 \le ||m{x} - m{x}_i||_2, \, i = 1, \dots, k
ight\}$$

is called the *Voronoi region* around \boldsymbol{x}_0 with respect to $\boldsymbol{x}_1, \ldots, \boldsymbol{x}_k$. From the above, it is a polyhedron as a finite intersection of halfspaces.

Let $\mathcal{P} \subseteq \mathbb{R}^n$ be a nonempty polyhedron, given by a finite intersection of halfspaces. Show that there are points $\boldsymbol{x}_0, \ldots, \boldsymbol{x}_k$ such that \mathcal{P} is the Voronoi region around \boldsymbol{x}_0 with respect to $\boldsymbol{x}_1, \ldots, \boldsymbol{x}_k$.

Exercise 2. (supporting hyperplanes) Represent each of the following closed, convex sets $C \subseteq \mathbb{R}^2$ as an intersection of halfspaces.

i) $C = \{ \mathbf{x} \in \mathbb{R}^2 \, | \, \|\mathbf{x}\|_2 \leq 1 \}$, the 2-dimensional Euclidean unit ball with radius r = 1

ii)
$$\mathcal{C} = \{\mathbf{x} \in \mathbb{R}^2 \mid x_2 \ge e^{x_1}\}$$

RNTHAACHE

- iii) $C = \{ \mathbf{x} \in \mathbb{R}^2 \mid x_2 \le \log x_1, x_1 > 0 \}$
- iv) $C = \{ \mathbf{x} \in \mathbb{R}^2_{>0} | x_1 x_2 \ge 1 \}.$