Homework 4 in Optimization in Engineering

Prof. Dr. Rudolf Mathar, Simon Görtzen, Markus Rothe 09.05.2012

Exercise 1. (partial sum of convex sets) Show that if \mathcal{S}_{1} and \mathcal{S}_{2} are convex sets in \mathbb{R}^{m+n}, then so is their partial sum

$$
\mathcal{S}=\left\{\left(x, y_{1}+y_{2}\right) \mid x \in \mathbb{R}^{m}, y_{1}, y_{2} \in \mathbb{R}^{n},\left(x, y_{1}\right) \in \mathcal{S}_{1},\left(x, y_{2}\right) \in \mathcal{S}_{2}\right\}
$$

Exercise 2. (invertible linear-fractional functions) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be the linear-fractional function

$$
f(x)=\frac{A x+b}{c^{T} x+d}, \quad \operatorname{dom} f=\left\{x \mid c^{T} x+d>0\right\} .
$$

Suppose the matrix

$$
Q=\left[\begin{array}{cc}
A & b \\
c^{T} & d
\end{array}\right]
$$

is nonsingular. Show that f is invertible and that f^{-1} is again a linear-fractional function. Give an explicit expression for f^{-1} in terms of Q.

Exercise 3. (convex norm cone) Let $x \in \mathbb{R}^{n}, t \in \mathbb{R}$. Suppose $\|\cdot\|$ is any norm in \mathbb{R}^{n}. The norm cone associated with this norm is the set

$$
\mathcal{S}=\{(x, t) \mid\|x\| \leq t\}
$$

Show that the norm cone is convex.

