Lehrstuhl für Theoretische Informationstechnik

Homework 4 in Optimization in Engineering

Prof. Dr. Rudolf Mathar, Simon Görtzen, Markus Rothe09.05.2012

Exercise 1. (partial sum of convex sets) Show that if S_1 and S_2 are convex sets in \mathbb{R}^{m+n} , then so is their partial sum

$$\mathcal{S} = \{ (x, y_1 + y_2) \, | \, x \in \mathbb{R}^m, \, y_1, y_2 \in \mathbb{R}^n, \, (x, y_1) \in \mathcal{S}_1, \, (x, y_2) \in \mathcal{S}_2 \} \ .$$

Exercise 2. (invertible linear-fractional functions) Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be the linear-fractional function

$$f(x) = \frac{Ax+b}{c^T x+d}$$
, dom $f = \{x | c^T x+d > 0\}$.

Suppose the matrix

RNTHAACHE

$$Q = \begin{bmatrix} A & b \\ c^T & d \end{bmatrix}$$

is nonsingular. Show that f is invertible and that f^{-1} is again a linear-fractional function. Give an explicit expression for f^{-1} in terms of Q.

Exercise 3. (convex norm cone) Let $x \in \mathbb{R}^n$, $t \in \mathbb{R}$. Suppose $||\cdot||$ is any norm in \mathbb{R}^n . The norm cone associated with this norm is the set

$$S = \{(x,t) \mid ||x|| \le t\}$$
.

Show that the norm cone is convex.