Homework 5 in Optimization in Engineering

Prof. Dr. Rudolf Mathar, Simon Görtzen, Markus Rothe 16.05.2012

Exercise 1. (minimum points) Let $f: \mathcal{C} \to \mathbb{R}$ denote a convex function defined on the convex set \mathcal{C} . A (global) minimum of f is an $\mathbf{x}^* \in \mathcal{C}$ with $f(\mathbf{x}^*) \leq f(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{C}$. Show that the set \mathcal{S} of all minimum points of f is convex.

Exercise 2. (monotone mappings) A function $\psi \colon \mathbb{R}^n \to \mathbb{R}^n$ is called *monotone* if for all $x, y \in \mathbb{R}^n$,

$$(\psi(\boldsymbol{x}) - \psi(\boldsymbol{y}))^T (\boldsymbol{x} - \boldsymbol{y}) \ge 0.$$

Suppose $f \colon \mathbb{R}^n \to \mathbb{R}$ is a differentiable convex function. Show that its gradient ∇f is monotone.

Exercise 3. (running average) Suppose $f : \mathbb{R} \to \mathbb{R}$ is a differentiable convex function. Show that its *running average* F, defined as

$$F(x) = \frac{1}{x} \int_0^x f(t) \, \mathrm{d}t, \quad x > 0,$$

is convex.

RNTHAACHE

Hint: For a twice differentiable function F defined on a real interval, convexity is equivalent to $F''(x) \ge 0$ for all x. This is the one-dimensional formulation of the second order condition for convexity.