Lehrstuhl für Theoretische Informationstechnik

Homework 6 in Optimization in Engineering

Prof. Dr. Rudolf Mathar, Simon Görtzen, Markus Rothe 23.05.2012

Exercise 1. (convex and concave functions) Decide which of the following functions are convex or concave and give reasons.

a) $f(x) = e^x - 1, x \in \mathbb{R}$

RNTHAACHE

- **b)** $f(\boldsymbol{x}) = x_1 x_2, \, \boldsymbol{x} \in \mathbb{R}^2_{>0}$
- c) $f(x) = \frac{1}{x_1 x_2}, x \in \mathbb{R}^2_{>0}$
- **d**) $f(\boldsymbol{x}) = e^{x_1^2 + x_2^2}, \, \boldsymbol{x} \in \mathbb{R}^2$

Exercise 2. (epigraph) Let $f: \mathcal{C} \to \mathbb{R}$ be a function defined on a convex, non-empty set $\mathcal{C} \subseteq \mathbb{R}^n$. Show that f is convex if and only if the epigraph of f

$$\operatorname{epi}(f) = \{(\boldsymbol{x}, y) \in \mathcal{C} \times \mathbb{R} \mid f(\boldsymbol{x}) \le y\}$$

is a convex set.

Exercise 3. (separating convex and concave functions) Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is a convex function and $g : \mathbb{R}^n \to \mathbb{R}$ is a concave function such that $g(\boldsymbol{x}) \leq f(\boldsymbol{x})$ for all \boldsymbol{x} . Show that there exists an affine function $h : \mathbb{R}^n \to \mathbb{R}$ with $g(\boldsymbol{x}) \leq h(\boldsymbol{x}) \leq f(\boldsymbol{x})$ for all \boldsymbol{x} . In other words, if a concave function g is an underestimator of a convex function f, then we can fit an affine function between f and g.