Homework 7 in Optimization in Engineering

Prof. Dr. Rudolf Mathar, Simon Görtzen, Markus Rothe 06.06.2012

Exercise 1. (conjugate functions) The conjugate function of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is defined as

$$
f^{*}(\boldsymbol{y})=\sup _{x \in \operatorname{dom} f}\left\{\boldsymbol{y}^{T} \boldsymbol{x}-f(\boldsymbol{x})\right\} .
$$

The domain of f^{*} consists of all \boldsymbol{y} with $f^{*}(\boldsymbol{y})<\infty$. For the functions below, compute a closed-form expression for the conjugate function and describe its domain.
a) $f(x)=e^{x}, x \in \mathbb{R}$
b) $f(x)=x \log x, x>0$
c) $f(x)=\frac{1}{x}, x>0$
d) $f(\boldsymbol{x})=\log \left(\sum_{i=1}^{n} e^{x_{i}}\right)$ with $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$.

For \mathbf{d}), assume that $\operatorname{dom} f^{*}=\left\{\boldsymbol{y} \in \mathbb{R}^{n} \mid \boldsymbol{y} \geq \mathbf{0}, \sum_{i=1}^{n} y_{i}=1\right\}$ is known.

Exercise 2. (log-concavity) Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable, $\operatorname{dom} f$ is convex, and $f(\boldsymbol{x})>0$ for all $\boldsymbol{x} \in \operatorname{dom} f$. Show that f is \log-concave if and only if for all $\boldsymbol{x}, \boldsymbol{y} \in \operatorname{dom} f$,

$$
\frac{f(\boldsymbol{y})}{f(\boldsymbol{x})} \leq \exp \left(\frac{\nabla f(\boldsymbol{x})^{T}(\boldsymbol{y}-\boldsymbol{x})}{f(\boldsymbol{x})}\right)
$$

Exercise 3. (optimal sets and values) Consider the optimization problem

$$
\begin{aligned}
\operatorname{minimize} & f_{0}\left(x_{1}, x_{2}\right) \\
\text { subject to } & 2 x_{1}+x_{2} \geq 1, \quad x_{1}+3 x_{2} \geq 1, \quad x_{1} \geq 0, \quad x_{2} \geq 0 .
\end{aligned}
$$

Make a sketch of the feasible set. For each of the following objective functions, give the optimal set and the optimal value.
a) $f_{0}\left(x_{1}, x_{2}\right)=x_{1}+x_{2}$
b) $f_{0}\left(x_{1}, x_{2}\right)=-x_{1}-x_{2}$
c) $f_{0}\left(x_{1}, x_{2}\right)=x_{1}$
d) $f_{0}\left(x_{1}, x_{2}\right)=\max \left\{x_{1}, x_{2}\right\}$
e) $f_{0}\left(x_{1}, x_{2}\right)=x_{1}^{2}+9 x_{2}^{2}$

