Homework 11 in Optimization in Engineering

Prof. Dr. Rudolf Mathar, Simon Görtzen, Markus Rothe 04.07.2012

Exercise 1. (exact line search) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the quadratic funtion

$$
f(\boldsymbol{x})=\frac{1}{2}\left(x_{1}^{2}+\gamma x_{2}^{2}\right)
$$

with $\gamma>0$. Show that the minimization of f using a descent method with exact line search and start point $x^{(0)}=(\gamma, 1)$ leads in the $k^{\text {th }}$ iteration to

$$
\begin{aligned}
& x_{1}^{(k)}=\gamma\left(\frac{\gamma-1}{\gamma+1}\right)^{k}, \\
& x_{2}^{(k)}=\left(-\frac{\gamma-1}{\gamma+1}\right)^{k} .
\end{aligned}
$$

Exercise 2. (convergence behaviour of Newton method) Newton's method with fixed step size $t=1$ can diverge if the inital point is not close to x^{*}. In this problem we consider two examples.
a) $f(x)=\log \left(e^{x}+e^{-x}\right)$ has a unique minimizer $x^{*}=0$. Run Newton's method with fixed step size $t=1$, starting at $x^{(0)}=1$ and at $x^{(0)}=1.1$.
b) $f(x)=-\log x+x$ has a unique minimizer $x^{*}=1$. Run Newton's method with fixed step size $t=1$, starting at $x^{(0)}=3$.

Plot f and f^{\prime}, and show the first few iterates.

