Lehrstuhl für Theoretische Informationstechnik

Homework 11 in Optimization in Engineering

Prof. Dr. Rudolf Mathar, Simon Görtzen, Markus Rothe04.07.2012

Exercise 1. (exact line search) Let $f : \mathbb{R}^2 \to \mathbb{R}$ be the quadratic function

RNTHAACHE

$$f(\boldsymbol{x}) = \frac{1}{2} \left(x_1^2 + \gamma x_2^2 \right)$$

with $\gamma > 0$. Show that the minimization of f using a descent method with exact line search and start point $x^{(0)} = (\gamma, 1)$ leads in the k^{th} iteration to

$$x_1^{(k)} = \gamma \left(\frac{\gamma - 1}{\gamma + 1}\right)^k,$$
$$x_2^{(k)} = \left(-\frac{\gamma - 1}{\gamma + 1}\right)^k.$$

Exercise 2. (convergence behaviour of Newton method) Newton's method with fixed step size t = 1 can diverge if the initial point is not close to x^* . In this problem we consider two examples.

- a) $f(x) = \log (e^x + e^{-x})$ has a unique minimizer $x^* = 0$. Run Newton's method with fixed step size t = 1, starting at $x^{(0)} = 1$ and at $x^{(0)} = 1.1$.
- b) $f(x) = -\log x + x$ has a unique minimizer $x^* = 1$. Run Newton's method with fixed step size t = 1, starting at $x^{(0)} = 3$.

Plot f and f', and show the first few iterates.