
Convex and Affine Sets:

• C affine if: λx1 + (1− λ)x2 ∈ C ∀x1,x2 ∈ C, λ ∈ R

• C convex if: λx1 + (1− λ)x2 ∈ C ∀x1,x2 ∈ C, λ ∈ [0, 1]

• Hyperplane: {x ∈ Rn | aTx = b}, a 6= 0

• Halfspace: {x ∈ Rn | aTx ≤ b}, a 6= 0

• Polyhedron: {x ∈ Rn | aT
i x ≤ bi, i = 1, . . . ,m, cTj x = dj, j = 1, . . . , p}

• Separation Theorem: C,D ⊆ Rn non-empty, convex with C ∩ D = ∅.
⇒ ∃ a ∈ Rn

6=0 and b ∈ R such that aTx ≤ b ≤ aTy ∀ x ∈ C,y ∈ D.

• Supporting Hyperplane Theorem: C ⊆ Rn non-empty, convex.
⇒ ∃ a supporting hyperplane at every boundary point of C.

Convex Functions:

• f [strictly] convex if: f(λx+ (1− λ)y)[<] ≤ λf(x) + (1− λ)f(y)

• f [strictly] concave if: −f [strictly] convex

• Theorem (Restriction of a convex function to a line) f : C → R is convex
⇔ g : {t | x+ tv ∈ C} → R, t 7→ f(x+ tv) is convex (in t) for any x ∈ C,v ∈ Rn.

• Theorem (First-order condition) Differentiable f is convex
⇔ f(y) ≥ f(x) +∇f(x)T (y − x) ∀ x,y ∈ C.

• Theorem (Second-order conditions) f twice differentiable.

1. f convex ⇔ ∇2f(x) ≥ 0 ∀ x ∈ C.
2. ∇2f(x) > 0 ∀ x ∈ C ⇒ f strictly convex.

• Theorem: f convex ⇔ epi(f) is convex.

• Theorem (Minimizing a convex function over a convex set) f convex and differentiable.
Then, equivalent are

1. x∗ is a global minimum.

2. x∗ is a local minimum.

3. x∗ is a critical point, i.e., ∇f(x∗) = 0.



Convex Optimization Problems:

• Optimization problem in standard form: minimize f(x)

subject to gi(x) ≤ 0, i = 1, . . . , s

hj(x) = 0, j = 1, . . . ,m

• Convex optimization problem in standard form: f, gi convex, hj(x) = aT
j x− bj

• Linear program (LP): minimize cTx+ d

subject to Gx ≤ h
Ax = b

Equivalent convex problems:

• Eliminating equality constraints: F and x0 are such that Ax = b↔ x = Fz+x0 for some z.

minimize f(x)

subject to gi(x) ≤ 0, i = 1, . . . , s

Ax = b

⇔
minimize (over z) f(Fz + x0)

subject to gi(Fz + x0) ≤ 0, i = 1, . . . , s

• Introducing equality constraints:

minimize f(A0x+ b0)

subject to gi(Aix+ bi) ≤ 0, i = 1, . . . , s

⇔ minimize (over x,yi) f(y0)

subject to gi(yi) ≤ 0, i = 1, . . . , s

yi = Aix+ bi = 0, i = 1, . . . , s

• Introducing slack variables for linear inequalities:

minimize f(x)

subject to aT
i x ≤ bi, i = 1, . . . , s

⇔ minimize f(x)

subject to aT
i x+ si = bi, i = 1, . . . , s

si ≥ 0, i = 1, . . . , s

• Epigraph form: Convex problem in standard form is equivalent to

minimize (over x, t) t

subject to f(x)− t ≤ 0

gi(x) ≤ 0, i = 1, . . . , s

Ax = b.

• Minimizing over some variables: f̃(x1) = infx2 f(x1,x2)

minimize f(x1,x2)

subject to gi(x1) ≤ 0, i = 1, . . . , s

⇔ minimize f̃(x1)

subject to gi(x1) ≤ 0, i = 1, . . . , s



Lagrangian Duality and KKT Conditions:

• Lagrangian: L(x,λ,µ) = f(x) +
∑s

i=1 λigi(x) +
∑m

j=1 µjhj(x)

• Lagrange dual function: LD(λ,µ) = infx∈D L(x,λ,µ)

• Lower bound property: LD(λ,µ) ≤ p∗ for any λ ≥ 0,µ ∈ Rm

• Lagrange dual problem: maximize LD(λ,µ)

subject to λ ≥ 0.

• Theorem (Weak duality): d∗ ≤ p∗

• Strong duality: d∗ = p∗

• Slater’s constraint qualification: Problem convex, and ∃ x ∈ int D with gi(x) < 0 ∀i,Ax = b

• Theorem: Slater’s constraint qualification ⇒ strong duality

• KKT conditions:

1. Primal constraints: gi(x) ≤ 0, i = 1, . . . , s, hj(x) = 0, j = 1, . . . ,m

2. Dual constraints: λ ≥ 0

3. Complementary slackness: λigi(x) = 0, i = 1, . . . , s

4. Gradient of Lagrangian with respect to x vanishes:

∇f(x) +
s∑

i=1

λi∇gi(x) +
m∑
j=1

µj∇hj(x) = 0

• Theorem: Consider a convex optimization problem with f, gi, hj differentiable, x̃, λ̃, µ̃ satisfying
the KKT conditions ⇒ x̃, (λ̃, µ̃) primal and dual optimal with zero duality gap.

• Theorem: Consider a convex optimization problem with f, gi, hj differentiable. Assume Slater’s
condition is satisfied. Then: x optimal ⇔ ∃ λ,µ satisfying the KKT conditions.



Unconstrained Optimization:

• Algorithm General descent method
given a starting point x ∈ domf
repeat

1. Determine a descent direction ∆x.

2. Line search. Choose step size t via exact or backtracking line search.

3. Update. x := x+ t∆x.

until stopping criterion is satisfied.

• Exact line search: t = argmins>0 f(x+ s∆x).

• Backtracking line search (parameters α ∈ (0, 1
2
), β ∈ (0, 1)):

starting at t = 1, repeat t := βt until f(x+ t∆x) < f(x) + αt∇f(x)T∆x.

• Gradient descent method: ∆x = −∇f(x)

• Normalized steepest descent method: ∆x = ∆xnsd = argmin{∇f(x)Tv | ‖v‖ = 1}

• Algorithm Newton’s method
given a starting point x ∈ domf, tolerance ε > 0.
repeat

1. Compute the Newton step and decrement.

∆xnt := −∇2f(x)−1∇f(x), λ2 := ∇f(x)T∇2f(x)−1∇f(x)

2. Stopping criterion. quit if λ2/2 ≤ ε.

3. Line search. Choose step size t via backtracking line search.

4. Update. x := x+ t∆xnt.

Constrained Optimization:

• Equality Constrained Problems The solution for the problem

minimize f(x)
may be achieved by solving

(
∇2f(x) AT

A 0

)(
∆xnt

w

)
=

(
−∇f(x)

0

)
Ax = b

and executing the Newton method with step ∆xnt.

• Algorithm Barrier method
given a strictly feasible x, t := t(0) > 0, ν > 1, tolerance ε > 0.
repeat

1. Centering step. Compute x∗(t) by minimizing tf + φ, subject to Ax = b.

2. Update. x := x∗(t).

3. Stopping criterion. quit if s/t < ε.

4. Increase t. t := νt.


