Convex and Affine Sets:

- C affine if: $\lambda \boldsymbol{x}_1 + (1 \lambda) \boldsymbol{x}_2 \in C \quad \forall \boldsymbol{x}_1, \boldsymbol{x}_2 \in C, \ \lambda \in \mathbb{R}$
- C convex if: $\lambda \boldsymbol{x}_1 + (1 \lambda) \boldsymbol{x}_2 \in C \quad \forall \boldsymbol{x}_1, \boldsymbol{x}_2 \in C, \ \lambda \in [0, 1]$
- Hyperplane: $\{x \in \mathbb{R}^n \mid a^T x = b\}, a \neq 0$
- Halfspace: $\{ \boldsymbol{x} \in \mathbb{R}^n \mid \boldsymbol{a}^T \boldsymbol{x} \leq b \}, \, \boldsymbol{a} \neq \boldsymbol{0}$
- Polyhedron: $\{x \in \mathbb{R}^n \mid a_i^T x \le b_i, i = 1, ..., m, c_j^T x = d_j, j = 1, ..., p\}$
- Separation Theorem: $\mathcal{C}, \mathcal{D} \subseteq \mathbb{R}^n$ non-empty, convex with $\mathcal{C} \cap \mathcal{D} = \emptyset$. $\Rightarrow \exists a \in \mathbb{R}^n_{\neq 0} \text{ and } b \in \mathbb{R} \text{ such that } a^T x \leq b \leq a^T y \ \forall x \in \mathcal{C}, y \in \mathcal{D}.$
- Supporting Hyperplane Theorem: $C \subseteq \mathbb{R}^n$ non-empty, convex. $\Rightarrow \exists$ a supporting hyperplane at every boundary point of C.

Convex Functions:

- f [strictly] convex if: $f(\lambda x + (1 \lambda)y)[<] \le \lambda f(x) + (1 \lambda)f(y)$
- f [strictly] concave if: -f [strictly] convex
- Theorem (Restriction of a convex function to a line) $f : \mathcal{C} \to \mathbb{R}$ is convex $\Leftrightarrow g : \{t \mid \boldsymbol{x} + t\boldsymbol{v} \in \mathcal{C}\} \to \mathbb{R}, t \mapsto f(\boldsymbol{x} + t\boldsymbol{v})$ is convex (in t) for any $\boldsymbol{x} \in \mathcal{C}, \boldsymbol{v} \in \mathbb{R}^n$.
- Theorem (First-order condition) Differentiable f is convex $\Leftrightarrow f(\boldsymbol{y}) \geq f(\boldsymbol{x}) + \nabla f(\boldsymbol{x})^T (\boldsymbol{y} - \boldsymbol{x}) \ \forall \ \boldsymbol{x}, \boldsymbol{y} \in \mathcal{C}.$
- Theorem (Second-order conditions) f twice differentiable.
 - 1. $f \text{ convex} \Leftrightarrow \nabla^2 f(\boldsymbol{x}) \ge 0 \ \forall \ \boldsymbol{x} \in \mathcal{C}.$
 - 2. $\nabla^2 f(\boldsymbol{x}) > 0 \ \forall \ \boldsymbol{x} \in \mathcal{C} \Rightarrow f$ strictly convex.
- Theorem: $f \text{ convex} \Leftrightarrow \operatorname{epi}(f)$ is convex.
- Theorem (Minimizing a convex function over a convex set) f convex and differentiable. Then, equivalent are
 - 1. x^* is a global minimum.
 - 2. \boldsymbol{x}^* is a local minimum.
 - 3. \boldsymbol{x}^* is a critical point, i.e., $\nabla f(\boldsymbol{x}^*) = \boldsymbol{0}$.

Convex Optimization Problems:

• Optimization problem in standard form:

minimize $f(\boldsymbol{x})$ subject to $g_i(\boldsymbol{x}) \leq 0, \quad i = 1, \dots, s$ $h_j(\boldsymbol{x}) = 0, \quad j = 1, \dots, m$

- Convex optimization problem in standard form: f, g_i convex, $h_j(\boldsymbol{x}) = \boldsymbol{a}_j^T \boldsymbol{x} b_j$
- Linear program (LP): minimize $c^T x + d$ subject to $Gx \le h$ Ax = b

Equivalent convex problems:

• Eliminating equality constraints: F and x_0 are such that $Ax = b \leftrightarrow x = Fz + x_0$ for some z.

 $\begin{array}{ll} \text{minimize} & f(\boldsymbol{x}) \\ \text{subject to} & g_i(\boldsymbol{x}) \leq 0, i = 1, \dots, s \\ & \boldsymbol{A}\boldsymbol{x} = \boldsymbol{b} \end{array} \xrightarrow{\text{minimize (over } \boldsymbol{z}) & f(\boldsymbol{F}\boldsymbol{z} + \boldsymbol{x}_0) \\ \text{subject to} & g_i(\boldsymbol{F}\boldsymbol{z} + \boldsymbol{x}_0) \leq 0, i = 1, \dots, s \\ & \boldsymbol{A}\boldsymbol{x} = \boldsymbol{b} \end{array}$

• Introducing equality constraints:

minimize	$f(oldsymbol{A}_0oldsymbol{x}+oldsymbol{b}_0)$	\Leftrightarrow	minimize (over $oldsymbol{x},oldsymbol{y}_i)$ $f(oldsymbol{y}_0)$
subject to	$g_i(\boldsymbol{A}_i\boldsymbol{x} + \boldsymbol{b}_i) \le 0, i = 1, \dots, s$		subject to $g_i(\boldsymbol{y}_i) \leq 0, i = 1, \dots, s$
			$oldsymbol{y}_i = oldsymbol{A}_i oldsymbol{x} + oldsymbol{b}_i = 0, i = 1, \dots, s$

• Introducing slack variables for linear inequalities:

minimize $f(\boldsymbol{x})$ \Leftrightarrow minimize $f(\boldsymbol{x})$ subject to $\boldsymbol{a}_i^T \boldsymbol{x} \le b_i, i = 1, \dots, s$ subject to $\boldsymbol{a}_i^T \boldsymbol{x} + s_i = b_i, i = 1, \dots, s$ $s_i \ge 0, i = 1, \dots, s$

• Epigraph form: Convex problem in standard form is equivalent to

minimize (over \boldsymbol{x}, t) tsubject to $f(\boldsymbol{x}) - t \leq 0$ $g_i(\boldsymbol{x}) \leq 0, i = 1, \dots, s$ $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{b}.$

• Minimizing over some variables: $\tilde{f}(\boldsymbol{x}_1) = \inf_{\boldsymbol{x}_2} f(\boldsymbol{x}_1, \boldsymbol{x}_2)$

 $\begin{array}{lll} \text{minimize} & f(\boldsymbol{x}_1, \boldsymbol{x}_2) & \Leftrightarrow & \text{minimize} & \tilde{f}(\boldsymbol{x}_1) \\ \text{subject to} & g_i(\boldsymbol{x}_1) \leq 0, i = 1, \dots, s & & \text{subject to} & g_i(\boldsymbol{x}_1) \leq 0, i = 1, \dots, s \end{array}$

Lagrangian Duality and KKT Conditions:

- Lagrangian: $L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = f(\boldsymbol{x}) + \sum_{i=1}^{s} \lambda_i g_i(\boldsymbol{x}) + \sum_{j=1}^{m} \mu_j h_j(\boldsymbol{x})$
- Lagrange dual function: $L_D(\boldsymbol{\lambda}, \boldsymbol{\mu}) = \inf_{\boldsymbol{x} \in \mathcal{D}} L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\mu})$
- Lower bound property: $L_D(\lambda, \mu) \leq p^*$ for any $\lambda \geq 0, \mu \in \mathbb{R}^m$
- Lagrange dual problem: maximize $L_D(\lambda, \mu)$ subject to $\lambda \ge 0$.
- Theorem (Weak duality): $d^* \le p^*$
- Strong duality: $d^* = p^*$
- Slater's constraint qualification: Problem convex, and $\exists x \in int \mathcal{D}$ with $g_i(x) < 0 \forall i, Ax = b$
- **Theorem:** Slater's constraint qualification \Rightarrow strong duality
- KKT conditions:
 - 1. Primal constraints: $g_i(x) \le 0, i = 1, ..., s, h_j(x) = 0, j = 1, ..., m$
 - 2. Dual constraints: $\lambda \ge 0$
 - 3. Complementary slackness: $\lambda_i g_i(\boldsymbol{x}) = 0, i = 1, \dots, s$
 - 4. Gradient of Lagrangian with respect to \boldsymbol{x} vanishes:

$$abla f(oldsymbol{x}) + \sum_{i=1}^s \lambda_i
abla g_i(oldsymbol{x}) + \sum_{j=1}^m \mu_j
abla h_j(oldsymbol{x}) = oldsymbol{0}$$

- **Theorem:** Consider a convex optimization problem with f, g_i, h_j differentiable, $\tilde{\boldsymbol{x}}, \tilde{\boldsymbol{\lambda}}, \tilde{\boldsymbol{\mu}}$ satisfying the KKT conditions $\Rightarrow \tilde{\boldsymbol{x}}, (\tilde{\boldsymbol{\lambda}}, \tilde{\boldsymbol{\mu}})$ primal and dual optimal with zero duality gap.
- **Theorem:** Consider a convex optimization problem with f, g_i, h_j differentiable. Assume Slater's condition is satisfied. Then: \boldsymbol{x} optimal $\Leftrightarrow \exists \lambda, \mu$ satisfying the KKT conditions.

Unconstrained Optimization:

- Algorithm General descent method given a starting point *x* ∈ dom*f* repeat
 - 1. Determine a descent direction Δx .
 - 2. Line search. Choose step size t via exact or backtracking line search.
 - 3. Update. $\boldsymbol{x} := \boldsymbol{x} + t\Delta \boldsymbol{x}$.

until stopping criterion is satisfied.

- Exact line search: $t = \operatorname{argmin}_{s>0} f(\boldsymbol{x} + s\Delta \boldsymbol{x})$.
- Backtracking line search (parameters $\alpha \in (0, \frac{1}{2}), \beta \in (0, 1)$): starting at t = 1, repeat $t := \beta t$ until $f(\boldsymbol{x} + t\Delta \boldsymbol{x}) < f(\boldsymbol{x}) + \alpha t \nabla f(\boldsymbol{x})^T \Delta \boldsymbol{x}$.
- Gradient descent method: $\Delta \boldsymbol{x} = -\nabla f(\boldsymbol{x})$
- Normalized steepest descent method: $\Delta x = \Delta x_{nsd} = \operatorname{argmin}\{\nabla f(x)^T v \mid ||v|| = 1\}$
- Algorithm Newton's method given a starting point *x* ∈ dom *f*, tolerance ε > 0.
 repeat
 - 1. Compute the Newton step and decrement.

$$\Delta \boldsymbol{x}_{nt} := -\nabla^2 f(\boldsymbol{x})^{-1} \nabla f(\boldsymbol{x}), \quad \lambda^2 := \nabla f(\boldsymbol{x})^T \nabla^2 f(\boldsymbol{x})^{-1} \nabla f(\boldsymbol{x})$$

- 2. Stopping criterion. quit if $\lambda^2/2 \leq \varepsilon$.
- 3. Line search. Choose step size t via backtracking line search.
- 4. Update. $\boldsymbol{x} := \boldsymbol{x} + t \Delta \boldsymbol{x}_{nt}$.

Constrained Optimization:

• Equality Constrained Problems The solution for the problem

minimize
$$f(\boldsymbol{x})$$

 $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{b}$ may be achieved by solving $\begin{pmatrix} \nabla^2 f(\boldsymbol{x}) & \boldsymbol{A}^T \\ \boldsymbol{A} & \boldsymbol{0} \end{pmatrix} \begin{pmatrix} \Delta \boldsymbol{x}_{nt} \\ \boldsymbol{w} \end{pmatrix} = \begin{pmatrix} -\nabla f(\boldsymbol{x}) \\ \boldsymbol{0} \end{pmatrix}$

and executing the Newton method with step $\Delta \boldsymbol{x}_{nt}$.

- Algorithm Barrier method given a strictly feasible x, t := t⁽⁰⁾ > 0, ν > 1, tolerance ε > 0. repeat
 - 1. Centering step. Compute $\mathbf{x}^*(t)$ by minimizing $tf + \phi$, subject to $\mathbf{A}\mathbf{x} = \mathbf{b}$.
 - 2. Update. $x := x^*(t)$.
 - 3. Stopping criterion. quit if $s/t < \varepsilon$.
 - 4. Increase t. $t := \nu t$.