Convex and Affine Sets:

- \mathcal{C} affine if: $\lambda \boldsymbol{x}_{1}+(1-\lambda) \boldsymbol{x}_{2} \in \mathcal{C} \quad \forall \boldsymbol{x}_{1}, \boldsymbol{x}_{2} \in \mathcal{C}, \lambda \in \mathbb{R}$
- \mathcal{C} convex if: $\lambda \boldsymbol{x}_{1}+(1-\lambda) \boldsymbol{x}_{2} \in \mathcal{C} \quad \forall \boldsymbol{x}_{1}, \boldsymbol{x}_{2} \in \mathcal{C}, \lambda \in[0,1]$
- Hyperplane: $\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{a}^{T} \boldsymbol{x}=b\right\}, \boldsymbol{a} \neq \mathbf{0}$
- Halfspace: $\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{a}^{T} \boldsymbol{x} \leq b\right\}, \boldsymbol{a} \neq \mathbf{0}$
- Polyhedron: $\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{a}_{i}^{T} \boldsymbol{x} \leq b_{i}, i=1, \ldots, m, \boldsymbol{c}_{j}^{T} \boldsymbol{x}=d_{j}, j=1, \ldots, p\right\}$
- Separation Theorem: $\mathcal{C}, \mathcal{D} \subseteq \mathbb{R}^{n}$ non-empty, convex with $\mathcal{C} \cap \mathcal{D}=\emptyset$. $\Rightarrow \exists \boldsymbol{a} \in \mathbb{R}_{\neq 0}^{n}$ and $b \in \mathbb{R}$ such that $\boldsymbol{a}^{T} \boldsymbol{x} \leq b \leq \boldsymbol{a}^{T} \boldsymbol{y} \forall \boldsymbol{x} \in \mathcal{C}, \boldsymbol{y} \in \mathcal{D}$.
- Supporting Hyperplane Theorem: $\mathcal{C} \subseteq \mathbb{R}^{n}$ non-empty, convex.
$\Rightarrow \exists$ a supporting hyperplane at every boundary point of \mathcal{C}.

Convex Functions:

- f [strictly] convex if: $f(\lambda \boldsymbol{x}+(1-\lambda) \boldsymbol{y})[<] \leq \lambda f(\boldsymbol{x})+(1-\lambda) f(\boldsymbol{y})$
- f [strictly] concave if: $-f$ [strictly] convex
- Theorem (Restriction of a convex function to a line) $f: \mathcal{C} \rightarrow \mathbb{R}$ is convex $\Leftrightarrow g:\{t \mid \boldsymbol{x}+t \boldsymbol{v} \in \mathcal{C}\} \rightarrow \mathbb{R}, t \mapsto f(\boldsymbol{x}+t \boldsymbol{v})$ is convex (in t) for any $\boldsymbol{x} \in \mathcal{C}, \boldsymbol{v} \in \mathbb{R}^{n}$.
- Theorem (First-order condition) Differentiable f is convex
$\Leftrightarrow f(\boldsymbol{y}) \geq f(\boldsymbol{x})+\nabla f(\boldsymbol{x})^{T}(\boldsymbol{y}-\boldsymbol{x}) \forall \boldsymbol{x}, \boldsymbol{y} \in \mathcal{C}$.
- Theorem (Second-order conditions) f twice differentiable.

1. f convex $\Leftrightarrow \nabla^{2} f(\boldsymbol{x}) \geq 0 \forall \boldsymbol{x} \in \mathcal{C}$.
2. $\nabla^{2} f(\boldsymbol{x})>0 \forall \boldsymbol{x} \in \mathcal{C} \Rightarrow f$ strictly convex.

- Theorem: f convex $\Leftrightarrow \operatorname{epi}(f)$ is convex.
- Theorem (Minimizing a convex function over a convex set) f convex and differentiable. Then, equivalent are

1. \boldsymbol{x}^{*} is a global minimum.
2. \boldsymbol{x}^{*} is a local minimum.
3. \boldsymbol{x}^{*} is a critical point, i.e., $\nabla f\left(\boldsymbol{x}^{*}\right)=\mathbf{0}$.

- Optimization problem in standard form: minimize $f(\boldsymbol{x})$

$$
\begin{array}{ll}
\text { subject to } & g_{i}(\boldsymbol{x}) \leq 0, \quad i=1, \ldots, s \\
& h_{j}(\boldsymbol{x})=0, \quad j=1, \ldots, m
\end{array}
$$

- Convex optimization problem in standard form: f, g_{i} convex, $h_{j}(\boldsymbol{x})=\boldsymbol{a}_{j}^{T} \boldsymbol{x}-b_{j}$
- Linear program (LP): minimize $\boldsymbol{c}^{T} \boldsymbol{x}+\boldsymbol{d}$

$$
\begin{array}{r}
\text { subject to } \quad \boldsymbol{G} \boldsymbol{x} \leq \boldsymbol{h} \\
\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}
\end{array}
$$

Equivalent convex problems:

- Eliminating equality constraints: \boldsymbol{F} and \boldsymbol{x}_{0} are such that $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b} \leftrightarrow \boldsymbol{x}=\boldsymbol{F} \boldsymbol{z}+\boldsymbol{x}_{0}$ for some \boldsymbol{z}.

$$
\begin{array}{ll}
\operatorname{minimize} & f(\boldsymbol{x}) \\
\text { subject to } & g_{i}(\boldsymbol{x}) \leq 0, i=1, \ldots, s \\
& \boldsymbol{A x}=\boldsymbol{b}
\end{array} \Leftrightarrow \quad \begin{aligned}
& \text { minimize (over } \boldsymbol{z}) \quad f\left(\boldsymbol{F} \boldsymbol{z}+\boldsymbol{x}_{0}\right) \\
& \text { subject to } g_{i}\left(\boldsymbol{F} \boldsymbol{z}+\boldsymbol{x}_{0}\right) \leq 0, i=1, \ldots, s
\end{aligned} \quad \begin{aligned}
&
\end{aligned}
$$

- Introducing equality constraints:

$$
\begin{array}{ll}
\text { minimize } & f\left(\boldsymbol{A}_{0} \boldsymbol{x}+\boldsymbol{b}_{0}\right) \\
\text { subject to } & g_{i}\left(\boldsymbol{A}_{i} \boldsymbol{x}+\boldsymbol{b}_{i}\right) \leq 0, i=1, \ldots, s
\end{array} \Leftrightarrow \quad \begin{aligned}
& \text { minimize (over } \left.\boldsymbol{x}, \boldsymbol{y}_{i}\right) \quad f\left(\boldsymbol{y}_{0}\right) \\
&
\end{aligned} \quad \begin{aligned}
& \text { subject to } g_{i}\left(\boldsymbol{y}_{i}\right) \leq 0, i=1, \ldots, s \\
& \boldsymbol{y}_{i}=\boldsymbol{A}_{i} \boldsymbol{x}+\boldsymbol{b}_{i}=0, i=1, \ldots, s
\end{aligned}
$$

- Introducing slack variables for linear inequalities:

$$
\begin{array}{lll}
\text { minimize } & f(\boldsymbol{x}) \\
\text { subject to } & \boldsymbol{a}_{i}^{T} \boldsymbol{x} \leq b_{i}, i=1, \ldots, s
\end{array} \Leftrightarrow \quad \begin{aligned}
& \text { minimize }
\end{aligned} f(\boldsymbol{x})
$$

- Epigraph form: Convex problem in standard form is equivalent to

$$
\begin{aligned}
\operatorname{minimize} & (\text { over } \boldsymbol{x}, t) \quad t \\
\text { subject to } & f(\boldsymbol{x})-t \leq 0 \\
& g_{i}(\boldsymbol{x}) \leq 0, i=1, \ldots, s \\
& \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}
\end{aligned}
$$

- Minimizing over some variables: $\tilde{f}\left(\boldsymbol{x}_{1}\right)=\inf _{\boldsymbol{x}_{2}} f\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)$

$$
\begin{array}{lll}
\operatorname{minimize} & f\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right) \\
\text { subject to } & g_{i}\left(\boldsymbol{x}_{1}\right) \leq 0, i=1, \ldots, s
\end{array} \Leftrightarrow \quad \Leftrightarrow \quad \begin{aligned}
& \text { minimize } \\
& f
\end{aligned} \quad \begin{aligned}
& \\
& \text { subject to } g_{i}\left(\boldsymbol{x}_{1}\right) \leq 0, i=1, \ldots, s
\end{aligned}
$$

- Lagrangian: $L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\mu})=f(\boldsymbol{x})+\sum_{i=1}^{s} \lambda_{i} g_{i}(\boldsymbol{x})+\sum_{j=1}^{m} \mu_{j} h_{j}(\boldsymbol{x})$
- Lagrange dual function: $L_{D}(\boldsymbol{\lambda}, \boldsymbol{\mu})=\inf _{\boldsymbol{x} \in \mathcal{D}} L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\mu})$
- Lower bound property: $L_{D}(\boldsymbol{\lambda}, \boldsymbol{\mu}) \leq p^{*} \quad$ for any $\boldsymbol{\lambda} \geq \mathbf{0}, \boldsymbol{\mu} \in \mathbb{R}^{m}$
- Lagrange dual problem: maximize $L_{D}(\boldsymbol{\lambda}, \boldsymbol{\mu})$ subject to $\boldsymbol{\lambda} \geq 0$.
- Theorem (Weak duality): $d^{*} \leq p^{*}$
- Strong duality: $d^{*}=p^{*}$
- Slater's constraint qualification: Problem convex, and $\exists \boldsymbol{x} \in \operatorname{int} \mathcal{D}$ with $g_{i}(\boldsymbol{x})<0 \forall i, \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$
- Theorem: Slater's constraint qualification \Rightarrow strong duality
- KKT conditions:

1. Primal constraints: $g_{i}(\boldsymbol{x}) \leq 0, i=1, \ldots, s, h_{j}(\boldsymbol{x})=0, j=1, \ldots, m$
2. Dual constraints: $\boldsymbol{\lambda} \geq \mathbf{0}$
3. Complementary slackness: $\lambda_{i} g_{i}(\boldsymbol{x})=0, i=1, \ldots, s$
4. Gradient of Lagrangian with respect to \boldsymbol{x} vanishes:

$$
\nabla f(\boldsymbol{x})+\sum_{i=1}^{s} \lambda_{i} \nabla g_{i}(\boldsymbol{x})+\sum_{j=1}^{m} \mu_{j} \nabla h_{j}(\boldsymbol{x})=\mathbf{0}
$$

- Theorem: Consider a convex optimization problem with f, g_{i}, h_{j} differentiable, $\tilde{\boldsymbol{x}}, \tilde{\boldsymbol{\lambda}}, \tilde{\boldsymbol{\mu}}$ satisfying the KKT conditions $\Rightarrow \tilde{\boldsymbol{x}},(\tilde{\boldsymbol{\lambda}}, \tilde{\boldsymbol{\mu}})$ primal and dual optimal with zero duality gap.
- Theorem: Consider a convex optimization problem with f, g_{i}, h_{j} differentiable. Assume Slater's condition is satisfied. Then: $\quad \boldsymbol{x}$ optimal $\Leftrightarrow \exists \boldsymbol{\lambda}, \boldsymbol{\mu}$ satisfying the KKT conditions.

Unconstrained Optimization:

- Algorithm General descent method
given a starting point $\boldsymbol{x} \in \operatorname{dom} f$
repeat

1. Determine a descent direction $\Delta \boldsymbol{x}$.
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. $\boldsymbol{x}:=\boldsymbol{x}+t \Delta \boldsymbol{x}$.
until stopping criterion is satisfied.

- Exact line search: $t=\operatorname{argmin}_{s>0} f(\boldsymbol{x}+s \Delta \boldsymbol{x})$.
- Backtracking line search (parameters $\alpha \in\left(0, \frac{1}{2}\right), \beta \in(0,1)$):
starting at $t=1$, repeat $t:=\beta t$ until $f(\boldsymbol{x}+t \Delta \boldsymbol{x})<f(\boldsymbol{x})+\alpha t \nabla f(\boldsymbol{x})^{T} \Delta \boldsymbol{x}$.
- Gradient descent method: $\Delta \boldsymbol{x}=-\nabla f(\boldsymbol{x})$
- Normalized steepest descent method: $\Delta \boldsymbol{x}=\Delta \boldsymbol{x}_{n s d}=\operatorname{argmin}\left\{\nabla f(\boldsymbol{x})^{T} \boldsymbol{v} \mid\|\boldsymbol{v}\|=1\right\}$
- Algorithm Newton's method
given a starting point $\boldsymbol{x} \in \operatorname{dom} f$, tolerance $\varepsilon>0$.
repeat

1. Compute the Newton step and decrement.

$$
\Delta \boldsymbol{x}_{n t}:=-\nabla^{2} f(\boldsymbol{x})^{-1} \nabla f(\boldsymbol{x}), \quad \lambda^{2}:=\nabla f(\boldsymbol{x})^{T} \nabla^{2} f(\boldsymbol{x})^{-1} \nabla f(\boldsymbol{x})
$$

2. Stopping criterion. quit if $\lambda^{2} / 2 \leq \varepsilon$.
3. Line search. Choose step size t via backtracking line search.
4. Update. $\boldsymbol{x}:=\boldsymbol{x}+t \Delta \boldsymbol{x}_{n t}$.

Constrained Optimization:

- Equality Constrained Problems The solution for the problem
$\begin{array}{ll}\text { minimize } & f(\boldsymbol{x}) \\ & \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}\end{array}$ may be achieved by solving $\left(\begin{array}{cc}\nabla^{2} f(\boldsymbol{x}) & \boldsymbol{A}^{T} \\ \boldsymbol{A} & \mathbf{0}\end{array}\right)\binom{\Delta \boldsymbol{x}_{n t}}{\boldsymbol{w}}=\binom{-\nabla f(\boldsymbol{x})}{\mathbf{0}}$
and executing the Newton method with step $\Delta \boldsymbol{x}_{n t}$.
- Algorithm Barrier method
given a strictly feasible $\boldsymbol{x}, t:=t^{(0)}>0, \nu>1$, tolerance $\varepsilon>0$.
repeat

1. Centering step. Compute $\boldsymbol{x}^{*}(t)$ by minimizing $t f+\phi$, subject to $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$.
2. Update. $\boldsymbol{x}:=\boldsymbol{x}^{*}(t)$.
3. Stopping criterion. quit if $s / t<\varepsilon$.
4. Increase $t . t:=\nu t$.
