

Prof. Dr. Anke Schmeink, Ehsan Zandi, Yulin Hu

Tutorial 3 Monday, November 2, 2015

Problem 1. (Separation Theorem) Complete the proof of the Separation Theorem (Theorem 2.1 in the lecture notes), which is proved for a special case in the lecture. Show that a separating hyperplane exists for two disjoint convex sets C and D.

Hints.

- You can use the result proved in Theorem 2.1 in the lecture, i.e., that a separating hyperplane exists when there exist points in the two sets whose distance is equal to the distance between the two sets.
- If C and D are disjoint convex sets, then the set $\{x y \mid x \in C, y \in D\}$ is convex and does not contain the origin.

Problem 2. (Supporting hyperplanes) Represent each of the following closed, convex sets $C \subseteq \mathbb{R}^2$ as an intersection of halfspaces.

- a) $C = \{ x \in \mathbb{R}^2 | x_2 \ge e^{x_1} \}.$
- **b)** $C = \{ \boldsymbol{x} \in \mathbb{R}^2_{>0} | x_1 x_2 \ge 1 \}.$

Problem 3. (Converse supporting hyperplane theorem) Suppose the set C is closed, has nonempty interior, and has a supporting hyperplane at every point in its boundary. Show that C is convex.