

Tutorial 4

Monday, November 9, 2015

Problem 1. (Definition of convexity) Suppose $f : \mathbb{R} \to \mathbb{R}$ is convex $a, b \in \text{dom } f$ with a < b.

a) Show that

$$f(x) \le \frac{b-x}{b-a}f(a) + \frac{x-a}{b-a}f(b)$$

for all $x \in [a, b]$.

b) Show that

$$\frac{f(x) - f(a)}{x - a} \le \frac{f(b) - f(a)}{b - a} \le \frac{f(b) - f(x)}{b - x}$$

for all $x \in (a, b)$. Draw a sketch that illustrates this inequality.

c) Suppose that f is differentiable. Use the result in (b) to show that

$$f'(a) \le \frac{f(b) - f(a)}{b - a} \le f'(b)$$

d) Suppose that f is twice differentiable. Use the result in (c) to show that $f''(a) \ge 0$ and $f''(b) \ge 0$.

Problem 2. (Second-order condition for convexity) Let $f : \mathcal{C} \to \mathbb{R}$ be a twice differentiable function on a convex set $\mathcal{C} \subset \mathbb{R}^n$. Prove the following statements.

- **a)** Let n = 1, then f is convex, iff $f''(x) \ge 0, \forall x \in \mathcal{C}$.
- **b)** f is convex, iff $\nabla^2 f(\boldsymbol{x}) \ge 0, \forall \boldsymbol{x} \in \mathcal{C}.$

Problem 3. (Inverse of an increasing convex function) Suppose $f : \mathbb{R} \to \mathbb{R}$ is strictly increasing and convex on its domain (a, b). Let g denote its inverse, i.e., the function with domain (f(a), f(b)) and g(f(x)) = x for a < x < b. What can you say about convexity or concavity of g?