Prof. Dr. Anke Schmeink, Ehsan Zandi, Yulin Hu

Tutorial 4

Monday, November 9, 2015

Problem 1. (Definition of convexity) Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is convex $a, b \in \operatorname{dom} f$ with $a<b$.
a) Show that

$$
f(x) \leq \frac{b-x}{b-a} f(a)+\frac{x-a}{b-a} f(b)
$$

for all $x \in[a, b]$.
b) Show that

$$
\frac{f(x)-f(a)}{x-a} \leq \frac{f(b)-f(a)}{b-a} \leq \frac{f(b)-f(x)}{b-x}
$$

for all $x \in(a, b)$. Draw a sketch that illustrates this inequality.
c) Suppose that f is differentiable. Use the result in (b) to show that

$$
f^{\prime}(a) \leq \frac{f(b)-f(a)}{b-a} \leq f^{\prime}(b)
$$

d) Suppose that f is twice differentiable. Use the result in (c) to show that $f^{\prime \prime}(a) \geq 0$ and $f^{\prime \prime}(b) \geq 0$.

Problem 2. (Second-order condition for convexity) Let $f: \mathcal{C} \rightarrow \mathbb{R}$ be a twice differentiable function on a convex set $\mathcal{C} \subset \mathbb{R}^{n}$. Prove the following statements.
a) Let $n=1$, then f is convex, iff $f^{\prime \prime}(x) \geq 0, \forall x \in \mathcal{C}$.
b) f is convex, iff $\nabla^{2} f(\boldsymbol{x}) \geq 0, \forall \boldsymbol{x} \in \mathcal{C}$.

Problem 3. (Inverse of an increasing convex function) Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is strictly increasing and convex on its domain (a, b). Let g denote its inverse, i.e., the function with domain $(f(a), f(b))$ and $g(f(x))=x$ for $a<x<b$. What can you say about convexity or concavity of g ?

