



## Prof. Dr. Anke Schmeink, Ehsan Zandi, Yulin Hu

## Tutorial 5 Monday, November 16, 2015

**Problem 1.** (Products and quotients of convex functions) Let  $f, g : \mathbb{R} \to \mathbb{R}_{>0}$ . Prove the following statements.

- a) If f and g are convex and not decreasing (or not increasing), then the product p(x) = f(x)g(x) is convex.
- **b)** If f and g are concave, f is not decreasing and g is not increasing (or vice versa), then the product p(x) = f(x)g(x) is concave.
- c) If f is convex and not decreasing as well as g is concave and not increasing, then the quotient  $q(x) = \frac{f(x)}{g(x)}$  is convex.

**Problem 2.** (Scalar Composition) Define the parameters  $a, b \in \mathbb{R}$  such that the function below is concave:

$$f: \ \boldsymbol{x} = [x, y]^T \in \mathbb{R}^2 \to \mathbb{R}, \ f(\boldsymbol{x}) = (b-1) \exp\left(-b(\frac{a}{2}x^2 + \frac{a}{2}y^2 + 2xy)\right)$$

**Problem 3.** (Maximum and minimum eigenvalues of a symmetric matrix)

Let  $f(\mathbf{A}) = \lambda_{\max}(\mathbf{A})$  and  $g(\mathbf{A}) = \lambda_{\min}(\mathbf{A})$  be functions which correspond, respectively, to the largest and smallest eigenvalues of the symmetric matrix  $\mathbf{A} \in \mathcal{S}^m$ . Prove the convexity or concavity of f and g.