Prof. Dr. Anke Schmeink, Ehsan Zandi, Yulin Hu

Tutorial 5

Monday, November 16, 2015
Problem 1. (Products and quotients of convex functions) Let $f, g: \mathbb{R} \rightarrow \mathbb{R}_{>0}$. Prove the following statements.
a) If f and g are convex and not decreasing (or not increasing), then the product $p(x)=$ $f(x) g(x)$ is convex.
b) If f and g are concave, f is not decreasing and g is not increasing (or vice versa), then the product $p(x)=f(x) g(x)$ is concave.
c) If f is convex and not decreasing as well as g is concave and not increasing, then the quotient $q(x)=\frac{f(x)}{g(x)}$ is convex.

Problem 2. (Scalar Composition) Define the parameters $a, b \in \mathbb{R}$ such that the function below is concave:

$$
f: \boldsymbol{x}=[x, y]^{T} \in \mathbb{R}^{2} \rightarrow \mathbb{R}, f(\boldsymbol{x})=(b-1) \exp \left(-b\left(\frac{a}{2} x^{2}+\frac{a}{2} y^{2}+2 x y\right)\right) .
$$

Problem 3. (Maximum and minimum eigenvalues of a symmetric matrix)
Let $f(\mathbf{A})=\lambda_{\max }(\mathbf{A})$ and $g(\mathbf{A})=\lambda_{\min }(\mathbf{A})$ be functions which correspond, respectively, to the largest and smallest eigenvalues of the symmetric matrix $\mathbf{A} \in \mathcal{S}^{m}$. Prove the convexity or concavity of f and g.

