

Prof. Dr. Anke Schmeink, Ehsan Zandi, Yulin Hu

Tutorial 9 Monday, December 14, 2015

Problem 1. (One-dimensional trust region problem) Consider the one-dimensional, real-valued trust region problem.

 $\begin{array}{ll}\text{minimize} & ax^2 + 2bx\\ \text{subject to} & x^2 \le 1. \end{array}$

a) Determine all pairs (a, b) for which the problem is non-convex.

In the following the problem shall be non-convex.

- **b)** Calculate the dual function $L_D(\lambda)$
- c) Give the optimal parameter λ^* which maximizes L_D and the corresponding value d^* .
- d) Show that the optimal value of the primal problem p^* equals d^* .

Problem 2. (Dual problem bounds) For the following optimization problems with optimization variable $x \in \mathbb{R}^2$, compute the dual problem and the maximum lower bound d^* for the optimal value p^* .

a)

minimize
$$2x_1^2 + 8x_2^2$$

subject to $3x_1 + 6x_2 = 10$

b)

maximize
$$2x_1x_2$$

subject to $x_1^2 + x_2^2 = 1$

Remark: Convert problem (b) into a minimization problem first.