

Prof. Dr. Anke Schmeink, Dr. Gholamreza Alirezaei, Martijn Arts, Christoph Schmitz

Übung 8

Montag, 14. Dezember 2015

Aufgabe 1. Es sei $X \sim N_2(\mathbf{0}, \Sigma)$ eine zweidimensionale normalverteilte Zufallsvariable mit $\Sigma = \begin{pmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{pmatrix}$ für $\sigma_1, \sigma_2 > 0$.

- a) Geben Sie die Verteilungsdichte $f_{\boldsymbol{X}}(\boldsymbol{x})$ von \boldsymbol{X} für $\boldsymbol{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2$ an. Vereinfachen Sie den Ausdruck soweit wie möglich.
- b) Für a, b > 0 beschreibt die Menge

$$\mathcal{E}(a,b) = \left\{ \boldsymbol{y} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \in \mathbb{R}^2 \,\middle|\, \frac{y_1^2}{a^2} + \frac{y_2^2}{b^2} = 1 \right\}$$

eine Ellipse in 1. Hauptlage mit Halbachsenlängen a und b.

Zeigen Sie, dass es zu jedem $x \in \mathbb{R}^2$, $x \neq 0$, eine solche Ellipse $\mathcal{E}(a,b)$ gibt, die

$$f_{\boldsymbol{X}}(\boldsymbol{x}) = f_{\boldsymbol{X}}(\boldsymbol{y})$$
 für alle $\boldsymbol{y} \in \mathcal{E}(a,b)$

erfüllt.

Es sei nun $a \in \mathbb{R}$ und $\boldsymbol{X} \sim \text{SCN}(\boldsymbol{0}, \boldsymbol{Q})$ mit $\boldsymbol{Q} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Weiterhin seien

$$\mathbf{A} = \begin{pmatrix} 1+i & 1+i \\ 1+i & a-i \end{pmatrix}$$
 und $\mathbf{b} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

gegeben. Definiere Y = AX + b.

c) Zeigen Sie, dass $Y \sim SCN(b, R)$ verteilt ist mit

$$\mathbf{R} = \begin{pmatrix} 4 & (a+1)(1+i) \\ (a+1)(1-i) & a^2+3 \end{pmatrix}.$$

- d) Wie ist die Zufallsvariable Z = X + Y verteilt? Geben Sie die Parameter der Verteilung explizit an.
- e) Berechnen Sie für a=0 und $\boldsymbol{y}=\begin{pmatrix}2\\1\end{pmatrix}$ den Funktionswert der Verteilungsdichte $f_{\boldsymbol{Y}}(\boldsymbol{y}).$

Aufgabe 2. Sei X zirkulär symmetrisch komplex verteilt mit Erwartungswert $\mathrm{E}(X) = \mu$.

- a) Zeigen Sie: $E[(X \mu)(X \mu)'] = 0$. Anmerkung: Die Matrix $E[(X - \mu)(X - \mu)'] = 0$ wird in der Literatur häufig *Pseudo-Kovarianzmatrix* genannt.
- b) Sei X_l der l-te Eintrag des Vektors X. Zeigen Sie: Der Realteil Re (X_l) und der Imaginärteil Im (X_l) sind unkorreliert. **Hinweis:** Benutzen Sie das Ergebnis aus **a**).
- c) Sei X weiterhin zirkulär symmetrisch, nehme aber nur reelle Werte an. Wie ist X dann verteilt?

Aufgabe 3. Es sei $\{X(t) \mid t > 0\}$ ein stochastischer Prozess. Die gemeinsame Verteilungsfunktion des Zufallsvektors $(X(t_1), X(t_2))'$ für zwei beliebige Zeitpunkte $t_1, t_2 > 0$ und $x_1, x_2 \ge 0$ laute

$$F_{(X(t_1),X(t_2))}(x_1,x_2) = P(X(t_1) \le x_1, X(t_2) \le x_2)$$

$$= \left(1 - \exp\left(-\frac{x_1^2}{t_1^2}\right)\right) \left(1 - \exp\left(-\frac{x_2^2}{t_2^2}\right)\right).$$

Berechnen und skizzieren Sie die Erwartungswertfunktion $\mu_X(t)$ des Prozesses. Berechnen Sie anschließend die zugehörige Autokorrelationsfunktion $R_{XX}(t_1, t_2)$.

Hinweis: Für

$$\Gamma(y) = \int_0^\infty x^{y-1} e^{-x} dx, \quad y > 0,$$

gilt $\Gamma(\frac{1}{2}) = \sqrt{\pi}$ und $\Gamma(y+1) = y\Gamma(y)$.