

Prof. Dr. Anke Schmeink, Dr. Gholamreza Alirezaei, Martijn Arts, Christoph Schmitz

Zusatzübung Donnerstag, 24. März 2016

Aufgabe 1. Es seien $X_1, X_2 \sim \mathrm{R}(0,1),$ wobei X_1 und X_2 stochastisch unabhängig sind. Betrachten Sie die mit dem Parameter c > 0 skalierte Zufallsvariable

$$Y = cX_1$$
.

Hinweis: Gehen Sie in der gesamten Aufgabe davon aus, dass die Voraussetzungen des Transformationssatzes für Dichten erfüllt sind.

- a) Bestimmen Sie die Verteilungsdichte $f_Y(y)$ der Zufallsvariablen Y.
- b) Bestimmen Sie den Erwartungswert von Y.
- c) Bestimmen Sie die Varianz von Y.

Der Zufallsvektor Z sei wie folgt definiert:

$$\boldsymbol{Z} = \begin{pmatrix} X_1^2 \\ \sqrt{X_2} \end{pmatrix}$$
.

d) Bestimmen Sie die gemeinsame Verteilungsdichte $f_{\mathbf{Z}}(z_1, z_2)$ des Zufallsvektors \mathbf{Z} .

Aufgabe 2. Die Gesamtaufgabe besteht aus zwei Teilen, die unabhängig voneinander gelöst werden können.

Teil I

Es werde der n-dimensional normalverteilte Zufallsvektor $X \sim N_n(\mu_X, \Sigma_X)$ betrachtet. Für die Matrix $A \in \mathbb{R}^{m \times n}$, den Vektor $b \in \mathbb{R}^m$ und den von X stochastisch unabhängigen m-dimensionalen Zufallsvektor $Z \sim N_m(\mu_Z, \Sigma_Z)$ werde der Zufallsvektor

$$Y = AX + b + Z$$

definiert.

a) Welche Verteilung besitzt **Y**?

Nun seien b = 0 und $\Sigma_Z = 0$, d.h. Z sei nun einpunktverteilt mit $\mu_Z = \begin{pmatrix} 1 & -2 \end{pmatrix}'$. Des Weiteren gelte

$$\mu_{X} = \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix} \quad \text{und} \quad \Sigma_{X} = \begin{pmatrix} 6 & 0 & -2 \\ 0 & 5 & 0 \\ -2 & 0 & 9 \end{pmatrix}.$$

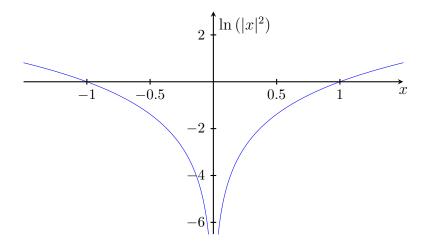
Die Matrix \boldsymbol{A} habe die Form

$$\mathbf{A} = \begin{pmatrix} 2 & \alpha & \beta \\ 0 & \beta & 0 \end{pmatrix} .$$

- b) Bestimmen Sie für $\beta > 0$ den Parameter α so, dass Y_1 und Y_2 stochastisch unabhängig sind.
- c) Bestimmen Sie jetzt den Parameter β so, dass \boldsymbol{Y} zusätzlich mittelwertfrei ist.
- d) Ermitteln Sie nun eine Matrix $W \in \mathbb{R}^{2\times 2}$, die V = WY für die in b) und c) bestimmten Parametern in einen standardnormalverteilten Zufallsvektor transformiert, d.h. $V \sim N_2(\mathbf{0}, \mathbf{I}_2)$.

Teil II

Es sei $X \sim R(-1,1)$ und es werde die Transformation $Y = \ln(|X|^2)$ betrachtet:



- e) Geben Sie den Träger der Zufallsvariablen Y an.
- f) Da $\ln |x|$ nicht injektiv auf [-1,1] ist, kann der Transformationssatz für Dichten **nicht** genutzt werden, um eine Verteilung von Y zu bestimmen. Bestimmen Sie daher eine Dichte von Y, indem Sie die Verteilungsfunktion

$$F_X(x) = P(X \le x) = \int_{-\infty}^x f_X(t) dt$$

verwenden. Formen Sie dazu $P(Y \leq y) = P\left(\ln |X|^2 \leq y\right)$ in geeigneter Weise um.

Hinweis: Für $b \ge a$ gilt $P(a \le X \le b) = F_X(b) - F_X(a)$.

Aufgabe 3. Betrachten Sie den stochastischen Prozess $W(t) = Ve^{i2\pi f_0 t}$, wobei $V \sim \text{Exp}(\lambda)$ mit $\lambda > 0$ und $f_0 > 0$.

a) Ist der stochastische Prozess $\{W(t) \mid t \in \mathbb{R}\}$ schwach stationär? (Beweis erforderlich) **Hinweis:** Es gilt $E(V) = \frac{1}{\lambda}$. Betrachten Sie nun den stochastischen Prozess Y(t) = X(t)N(t), mit welchem multiplikatives Rauschen modelliert werden soll. Dabei sei N(t) Gaußsches weißes Rauschen mit E(N(t)) = 0 und $R_{NN}(t_1, t_2) = \frac{N_0}{2} \delta(t_1 - t_2)$. Zudem seien N(t) und X(t) unkorreliert.

- b) Bestimmen Sie die Erwartungswertfunktion E(Y(t)) und die Autokorrelationsfunktion $R_{YY}(t_1, t_2)$ unter Berücksichtigung der angegebenen Größen.
- c) Welche Bedingungen müssen für den stochastischen Prozess X(t) gelten, damit Y(t) schwach stationär ist.

Im Folgenden sei X(t) = A, wobei $A \sim R(0,2)$. In diesem Fall ist $\{Y(t)\}$ schwach stationär.

d) Bestimmen Sie das Leistungsdichespektrum $S_{YY}(f)$ von $\{Y(t)\}$.

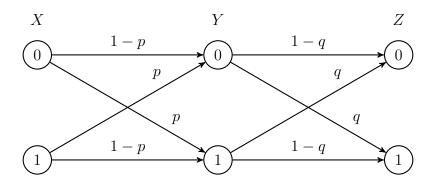
Der stochastische Prozess wird gemäß dem unten abgebildeten System gefiltert. Dabei gilt für die Ausgabe des Systems $Z(t) = Y(t) - Y(t - t_0)$ mit $t_0 > 0$.

$$\{Y(t)\}$$
 \longrightarrow $h(t)$ $\}$

- e) Geben Sie die Impulsantwort h(t) des Systems an.
- f) Nun soll das Leistungsdichtespektrum $S_{ZZ}(f) = S_{YY}(f)|H(f)|^2$ des Prozesses $\{Z(t)\}$ bestimmt werden. Berechnen Sie dazu $|H(f)|^2$.

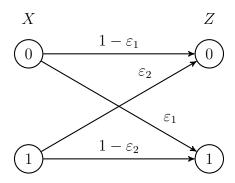
Hinweis: Es gilt $e^{ix} - e^{-ix} = 2i\sin(x)$.

Aufgabe 4. Es werde der unten abgebildete Kanal betrachtet, der aus zwei verketteten binär-symmetrischen Kanälen besteht.



Anmerkung: Verwenden Sie in dieser Aufgabe den Logarithmus zur Basis zwei. Es gelte die Konvention $0 \cdot \log(0) = 0$.

- a) Bestimmen Sie die Fehlerwahrscheinlichkeiten ε_1 und ε_2 des äquivalenten Ersatzkanals.
- b) Begründen Sie, ob es sich bei dem Ersatzkanal um einen symmetrischen Kanal handelt.



- c) Betrachten Sie nun den Teilkanal $X \to Y$. Geben Sie ausgehend von der Kapazität dieses Kanals an, für welchen Wert des Parameters p die Kapazität zu Null wird.
- d) Schließen Sie damit auf die Bedingungen für p und q, sodass die Kapazität des Gesamtkanals $X \to Z$ Null wird.
- e) Für welche beiden Werte des Parameters p wird die Kapazität des Kanals $X \to Y$ Eins?
- f) Für welche Kombinationen der Parameter p und q wird die Kapazität des Gesamtkanals $X \to Z$ Eins?

Hinweis: Es gilt $I(X; Z) \le \min \{I(X; Y), I(Y; Z)\}.$